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Repeating patterns are essential in music understanding and data compression. This paper
applies information theory concepts to rhythmic analysis of recorded percussion music. Down-
beat detection is addressed via lossy coding of an accentuation feature under rate-distortion
criteria, assuming the correct alignment produces the simplest explanation for the data. The
resulting description is suitable to related tasks, e.g. assessing performances’ complexity and
estimating the number of different rhythmic patterns played.

0 INTRODUCTION

Often a parallel is drawn between data compression and
computational learning [1]. The argument runs as follows:
the more we are able to compress the data, the more we
have learned about its underlying regularities. Similarly, it
is also common to draw a connection between data com-
pression and complexity assessment [2, 3]. Simply put,
data compression captures the amount of structured in-
formation present in a certain phenomenon, therefore the
compression ratio can serve as a measure of the complex-
ity of the data. This idea has been applied in a myriad of
disciplines [4, 5, 6], including music modeling [7, 8, 9].

Part of music understanding can be seen as a problem of
finding repeated patterns, and thence structure [10, 11]. Ul-
timately, data compression can be tailored to the problem
of explicitly finding structure through repeated patterns in
the data under analysis [12]. Some recent works address
the analysis of symbolic representations of musical pieces
through general purpose text compression techniques [13]
and point-set compression algorithms [14].

Consequently, information theory—and particularly,
data compression—stands as an appealing framework
for music modeling. Source coding is a mapping from a
sequence of symbols from an information source to a se-
quence of alphabet symbols, such that the source symbols
can be exactly recovered (lossless coding), or recovered
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with some distortion (lossy coding). In his foundational
work on information theory in 1948, Claude Shannon es-
tablished the limits to possible data compression [15]. His
source coding theorem states that it is not possible to loss-
lessly compress the data using an average number of bits
per symbol (i.e. coding rate) smaller than the entropy of the
source. In this context, entropy is the expected value of the
information contained in each message, where information
is defined as the cologarithm of the symbol probabilities.

Information theory aims at providing a measure of the
amount of information conveyed by the data, which can be
interpreted as the length of its most compact description. In
this approach, the messages to be encoded are supposed to
be outcomes of a known random source, whose character-
istics determine the encoding. Therefore, given a random
source of known characteristics, we are interested in the
minimum expected number of bits per symbol to transmit
a message from the source through an error-free channel.

For lossy source coding, Shannon introduced and devel-
oped the theory of source coding with a fidelity criterion,
also called rate-distortion theory, which provides the the-
oretical foundations for lossy data compression [15, 16].
In practice, when we have a continuous source we are not
necessarily interested in exact recovery, but only in ap-
proximate recovery within a given tolerance. Hence, a dis-
tortion measure is introduced to account for the average
information loss. The problem of coding is then formu-
lated as determining the minimal number of bits per sym-
bol, as measured by the coding rate, so that the source
can be approximately recovered without exceeding a given
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distortion value. Rate-distortion theory has been studied
by the information-theory community for more than fifty
years [17, 18]. Its concepts are an essential component
of many lossy compression techniques and standards, and
have been successfully applied to lossy coding of speech,
high-quality audio, images, and video [18, 19]. Neverthe-
less, the application of a lossy source coding scheme to the
description of music and the analysis of its structure re-
mains, to the best of our knowledge, virtually unexplored.

The ubiquitous application of digital technology to mu-
sic distribution/storage has fueled a new multidisciplinary
field of research during the last few decades: Music In-
formation Retrieval (MIR) [20]. It focuses on the process-
ing of music-related digital data (such as editorial meta-
data, scores, lyrics, and audio), and the development of
methodologies to process and understand such data. Most
of the proposed methods rely on audio content, and dif-
ferent kinds of information are extracted by means of sig-
nal processing techniques [21]. The extraction of musically
meaningful rhythm-related information from audio record-
ings is a core task in MIR [22, 23], with applications in dig-
ital audio workstations for music editing and processing,
DJ-mixing software and hardware products, and intelligent
organization and navigation over large music collections.

The attribute of rhythm is of central importance in mu-
sic. It concerns the way in which the musical events are
arranged in time, grouped and organized into structures
and patterns. There is a broad agreement on the impor-
tance of rhythmic patterns as structural elements in mu-
sic [24]. From Western Africa traditions to European folk
dances, repetitive rhythmic patterns are the core of rhyth-
mic/metrical structures. In modern music theory, metrical
structure is described as a regular pattern of points in time,
hierarchically organized in metrical levels of strong and
weak beats [25]. Beats specifically refer to the pulsation
of the perceptually most salient metrical level, and are fur-
ther grouped into measures or bars. The first beat of each
measure is called the downbeat. The metrical structure it-
self is not present in the audio signal, but is rather inferred
by the listener through a complex cognitive process [24].

The main motivation of this work arises from a novel
idea: to recast the downbeat detection task as a data com-
pression problem. Different possible alignments of the
beats within the rhythm cycle are evaluated, and a parsi-
mony criterion is used to select the one corresponding to
the downbeat. The hypothesis is that the correct alignment
will allow for a simpler explanation of the data than the
misaligned ones. To this end, one adopts a lossy compres-
sion framework based on rate-distortion theory, suitable to
the continuous data source analyzed: an accentuation fea-
ture function directly computed from audio. In this way, a
sort of music structure analysis problem—in its minimal
expression—is formulated in terms of rate-distortion the-
ory. It turned out that the description obtained is well suited
for addressing other related tasks, namely complexity as-
sessment of performances and estimation of the number of
different rhythmic patterns found in a given recording.

The rest of the document is organized as follows. The
next section reviews the rate-distortion theory and de-

scribes the methods applied. In Section 2 the proposed ap-
proach to deal with music audio recordings is presented.
Some experiments are conducted using an existing dataset
of percussion music recordings, which provides a suitable
scenario for bringing into focus the rhythmic aspects of
music, without the need of considering the interplay with
other music dimensions, such as melody and harmony.
The experiments and respective results are reported in Sec-
tion 3. The paper ends with a discussion on the present
work, including promising directions for future research.

1 Rate-distortion theory

An introduction to rate-distortion theory usually recalls
that the description of a real number requires an infinite
number of bits, thus a finite representation of a continu-
ous random variable X can never be perfect [26]. How-
ever, having defined some sort of evaluation measure, one
can try to quantify how good the representation is. This
is accomplished through the introduction of a measure of
distortion, d, to describe the distance between the random
variable and its representation. By allowing a certain de-
gree of distortion, the amount of bits used in the represen-
tation can be reduced. In communication theory, this be-
comes the problem of determining the smallest number of
bits per symbol (as measured by the average bit rate R)
that must be transmitted through an ideal channel so that
the system input signal is reconstructed at the receiver with
an average distortion not higher than D. Thus, a communi-
cation system involving an encoder and a decoder can be
formulated based on rate-distortion.

1.1 Encoding
Consider such a rate-distortion encoder/decoder system

applied to a random variable X . Let Xn = X1,X2, . . . ,Xn
be a sequence i.i.d ∼ pX (x), x ∈X . This source se-
quence Xn ∈X n is represented by the encoder as an in-
dex fn(Xn) ∈ {1,2,3, . . . ,2nR}. The decoder represents Xn

by an estimate X̂n ∈ X̂ n. A (2nR,n)-rate distortion code
can be defined, which consists of an encoding function,

fn : X n → {1,2,3, . . . ,2nR}, (1)

and a decoding or reproduction function,

gn : {1,2,3, . . . ,2nR} → X̂ n. (2)

The decoded sequence gn( fn(Xn)) = X̂n is a quantized ver-
sion of the original source sequence Xn according to a
scheme that is optimal for a given distortion measure.

1.2 Vector quantization
If we are given R bits per symbol to represent source

X , the problem is to find the optimum reproduction points
which minimize a distortion measure, i.e. design a vector
quantizer Q that maps an Euclidean space of dimension k,
Rk, to a finite codebook CM with M codevectors χ̂m ∈ Rk.

Q : Rk → CM = {χ̂1, χ̂2, . . . , χ̂M}. (3)
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Codevector χ̂m has an associated reconstruction region or
cell

Rm = {x ∈ Rk | Q(x) = χ̂m}. (4)

The encoder is completely specified by the partition of Rk,
and the decoder is completely specified by the codebook.
Given a distortion measure d(x,Q(x)), the mean distortion
value achieved by the system is computed as

D =
∫

Rk
d(x,Q(x)) pX (x) dx, (5)

where pX (x) is the probability density function of X .
Two simple properties are useful to find a proper vec-

tor quantizer. First, given a set of reconstruction points
{χ̂i}, the distortion is minimized by mapping each element
of Xn to the closest of them (the nearest-neighbor condi-
tion). The set of nearest-neighbor regions with respect to
the distortion measure is called a Voronoi or Dirichlet par-
tition. Then, given a certain partition, the reconstruction
point for each region should be selected in order to min-
imize D, which is accomplished by selecting the centroid
of the region as the reconstruction point (the centroid con-
dition). The generalized Lloyd algorithm for designing a
vector quantizer is based on these properties [27, 28].

1.3 Generalized Lloyd algorithm
The generalized Lloyd algorithm [28] is an iterative

algorithm that starts with a certain set of reconstruction
points and finds the optimal reconstruction regions as
the nearest-neighbor regions with respect to the distortion
measure. Then, new optimal reconstruction points are cho-
sen as the centroids of the reconstruction regions, and the
procedure is repeated. In this way, the expected distortion
decreases at each iteration, and the algorithm converges to
a local minimum in a finite number of iterations. A stop-
ping criterion has to be applied, for instance not surpassing
a minimum amount δ of distortion decrease between itera-
tions. The algorithm is summarized in Algorithm 1.

Algorithm 1 Generalized Lloyd algorithm
step 1: m = 1, initial codebook C1 = {χ̂1} and distortion D1
step 2: given codebook Cm find codebook Cm+1 by
2.a finding nearest-neighbor regions {Rm} to partition Rk

2.b setting reconstruction points {χ̂m+1} as centroids of {Rm}
step 3: compute distortion Dm+1 for new codebook Cm+1
if (Dm − Dm+1 > δ ) then

goto step 2

It is worth noting the close relationship between the gen-
eralized Lloyd algorithm and the k-means clustering algo-
rithm [29]. The latter also repeatedly finds the centroid of
each set in the partition, and then re-partitions the input ac-
cording to the closest centroids. But the main difference is
that k-means clustering operates on a discrete set of points
instead of a continuous region. Thus, repartitioning the in-
put means simply determining the nearest centroid to the
finite set of points, whilst the generalized Lloyd algorithm
actually partitions the whole space into regions. If the input
is a finite set of points, both algorithms are equivalent.

1.4 Distortion measure
The distortion function d(x, x̂) measures the cost of rep-

resenting symbol x by symbol x̂. It can be regarded as a
mapping d : X × X̂ → R+, from the set of pairs of the
source alphabet and the reproduction alphabet into non-
negative real numbers. To measure the distortion between
sequences xn and x̂n, the average of the per–symbol distor-
tion of the elements of the sequence can be computed:

d(xn, x̂n) =
1
n

n

∑
j=1

d(x j, x̂ j). (6)

A very common distortion function is the squared-error
distortion. Given x, x̂ ∈ Rk, such that x = [x1,x2, . . . ,xk]
and x̂ = [x̂1, x̂2, . . . , x̂k], it can be defined as the squared 2-
norm of the difference between symbols normalized by k,

d(x, x̂) =
1
k
‖x− x̂‖2

2 =
1
k

k

∑
i=1

(xi − x̂i)
2. (7)

1.5 Operational rate-distortion curve
The relationship between rate and distortion can be de-

scribed by a rate-distortion function, R(D), that determines
the set of possible achievable points in the rate-distortion
trade-off for a certain statistical source class [19]. In order
to derive such bounds the source has to be properly charac-
terized, but this can be troublesome for complex sources,
such as audio and video signals.1 Besides, the bound pro-
vided by a theoretical rate-distortion function gives no con-
structive procedure for attaining that optimal performance.

Instead, a practical quantization scheme can be exam-
ined, and the best operating points of this particular system
can be searched for. If all possible quantization choices for
that system are considered for a certain source (described
by a statistical model or a training set), an operational rate-
distortion curve [19, 30] can depict the distortion achieved
by the best encoder-decoder pair designed for each rate.
Its points are said to be operational because they are all
achievable with the chosen quantization implementation
for the available data. This curve allows to identify the best
achievable operating points as well as to differentiate them
from those that are sub-optimal or unachievable. When we
can make the search among a fixed and discrete set of pa-
rameters, each combination of parameters gives a certain
R-D pair, producing a curve of individual admissible oper-
ating points. In this case, the convex hull of the set of oper-
ational points defines the boundary between achievable and
non-achievable performances [19], as shown in Figure 1.

1.6 Optimization
Within this rate-distortion framework, given a source

with a certain distribution and a distortion measure, we
seek to establish what is the minimum expected distor-
tion at a particular rate, or equivalently, what is the min-

1A closed form can be found for R(D) in special cases, e.g.
the Gaussian source with squared-error distortion, or the binary
memoryless (Bernoulli-p) source with Hamming distortion [26].
For other distributions, numerical methods must be applied [19].
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Fig. 1. Schematic diagram of an operational rate-distortion
curve, with the operational points and their convex hull. The dis-
crete version of the Lagrangian optimization is also depicted.

imum rate description required to achieve a certain distor-
tion [26]. This can be posed in the form of constrained op-
timization problems. That means considering either a cost
function D with constrained rate R ≤ Rc, or conversely a
cost function R with constrained distortion D ≤ Dc.

The solution of a constrained optimization problem can
often be found by using the Lagrangian method, which
minimizes an unconstrained cost function that is the sum
of the original objective function and a term that incorpo-
rates the constraint and a real multiplier λ ≥ 0, known as
Lagrange multiplier. This is a well known technique for
problems where the cost function is continuous and dif-
ferentiable. Yet, when the operational rate-distortion curve
is considered, one can apply a discrete version of the La-
grangian [19] that is able to find and optimal solution as
long as there exists a point in the convex hull that meets the
required constraint. Let l be an index used to denote the op-
erational points on the convex hull of the curve such that as
l increases, the rate decreases and the distortion increases.
The discrete optimization problem can be formulated as

minimize
l

J = Dl + λRl . (8)

For a particular value of λ , the Lagrangian rate-distortion
functional J is minimized as follows. Find the point on the
convex hull that intersects, among all line contours with a
given J value (i.e. with slope equal to−1/λ ), that one with
the smallest J value. Figure 1 illustrates the procedure.

Each choice of λ can lead to the selection of a specific
optimal point in the rate-distortion trade-off. In particular,
minimizing J when λ = 0 is equivalent to minimizing the
distortion, whereas minimizing J when λ → ∞ is equiva-
lent to minimizing the rate. Intermediate values of λ de-
termine intermediate operating points. Finding the λ value
that provides an optimal solution at the required rate can be
done using approaches such as the bisection search [19].

2 Application to musical rhythm analysis

The proposed approach is based on the idea of describ-
ing the rhythmic information of a complete music perfor-
mance by using a rate-distortion coding scheme. We expect

Fig. 2. Candombe players at the recording session. From left to
right: repique, piano, chico, piano, and repique.

that by studying the coding trade-off between the number
of bits per symbol and the amount of distortion we gain
some insight into the characteristics of the performance.

2.1 Percussion music analysis
In order to focus on the rhythmic aspects of music with-

out the need of considering other music dimensions, the
present study deals with percussion music. In particular,
it examines a certain type of Latin American music of
African origin: the candombe drumming, one of the most
defining traits of popular culture in Uruguay [31]. Like in
other musics of the Afro–Atlantic tradition, such as Afro–
Cuban, the candombe shows repetitive rhythmic patterns.
Its rhythm cycle, comprising four beats, can be subdivided
in sixteen pulses or tatums. The rhythm results of the inter-
action among rhythmic patterns of three drums of different
size and pitch, called chico, repique and piano. The drum–
head is hit with one hand bare and the other holding a stick,
as shown in Figure 2. The stick is also used to hit the shell
when playing the clave, a pattern used for temporal syn-
chronization. Examples of clave, chico and piano patterns
are shown in music notation in Figure 3 (top).

Since its pattern is the most informative on both beat
and downbeat locations, the analysis method proposed is
tailored towards the piano drum, i.e. the largest and low-
est sounding of the three drums. Actually, the piano drum
has two main functions: playing the base rhythm with char-
acteristic one–cycle patterns (piano base), and occasional
more complex figurations (piano repicado), typically one
or sometimes two cycles long. The many pattern variants
that can be found depend on both the style of each neigh-
borhood and the individual style of the performer.

2.2 Audio feature extraction
An audio recording of a complete music performance

is represented using spectral audio features to serve as the
primary input source to encode. This is done in two steps.

Step 1: The spectral flux [32] is calculated for the sig-
nal under analysis to produce an accentuation feature that
emphasizes the onset of notes by seizing the changes in
its spectral magnitude along different frequency bands.
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Firstly, one calculates the Short-Time Fourier Transform
(STFT) of the discrete-time audio signal s[t] as

S(u,z) =
1
T

T−1

∑
t=0

w[t − uh] s[t] e− j 2π
T zt , (9)

where u is the signal frame index, z is the frequency bin in-
dex, h is a hop size in samples (20 ms) and w[t] is a smooth-
ing Hann window (40 ms). Then, the equal-spaced bins of
the STFT are combined into fewer bands whose center fre-
quencies follow the Mel scale so as to better approximate
human auditory resolution, i.e. coarser at high frequencies
and finer at low frequencies [33]. The magnitude of the
Mel-scaled short-time spectra is time-differentiated, and
the resulting sequences are half-wave rectified to consider
only positive magnitude changes. Summing along the MEL
frequency bins z′, one obtains the accentuation feature

SF(u) =
Z−1

∑
z′=0

H
(
|S(u,z′)| − |S(u− 1,z′)|

)
, (10)

where H(x) = x+|x|
2 , denotes half-wave rectification.

In principle, the feature value is high when a stroke has
been articulated and close to zero otherwise. But it also car-
ries some information on the type of stroke. For instance,
an accented stroke produces a higher feature value com-
pared to a muffled one, since the spectral change is more
abrupt and typically encompasses a wider frequency band.

To roughly separate the rhythmic patterns of the differ-
ent drums, a sub-band filtering is implemented by summing
the spectral flux along different frequency bands, as shown
in Figure 3. Only the low-frequency band up to approxi-
mately 200 Hz—corresponding to the piano drum—is used
in the reported experiments. A local amplitude normaliza-
tion is carried out to preserve intensity variations of the
rhythmic patterns while discarding long-term fluctuations
in dynamics. A p-norm within a local window is applied as

SF(u) =
SF(u)

p
√

∑
∆
v=−∆

|SF(u + v)|p
, (11)

where p controls the type of norm and ∆ determines the
window length. A value of p = 8 was used in the reported
experiments, so that if the feature in the current frame is
close to the highest value within the window it is normal-
ized to 1. For the normalization to behave as desired, the ∆

parameter must be selected such that several sound events
lay within the window. This is implemented by considering
∆ to be proportional to the tempo of the performance, i.e.
∆ = T τ , where τ stands for the tatum period in samples
and T > 0 is an integer value. A value of T = 4 was used
in the reported experiments, which corresponds to a win-
dow of approximately half a rhythm cycle. Note that the
tatum period is estimated from manual annotations of the
beats, available for the dataset used in the experiments; it
could also had been inferred automatically from the audio
signal as in [34].

Step 2: The accentuation feature is organized into a
feature map. Firstly, the feature signal is time-quantized
to the rhythm metric structure by considering a grid of

chico

piano

clave

x

Fig. 3. Example of feature extraction for a synthetic audio signal
combining piano, chico and clave patterns, as indicated in music
notation. The first two plots are the magnitude of the Mel-scaled
short-time spectra, and its half-wave rectified first-order differ-
ence. Next, the accentuation feature extracted in three different
frequency bands (high, medium, and low) delimited by the dashed
lines is shown. Beat locations are indicated by vertical lines. In
the accentuation feature plots: time-quantized feature values are
denoted by red crosses; the articulated events of each pattern are
depicted with dots, and approximately match the peaks of the fea-
ture signal. The low-frequency feature signal is used to build a
map of rhythmic patterns where feature values are represented as
shades of gray (darker colours for higher values), and each cycle-
length pattern becomes a column. The three feature maps at the
bottom correspond, in descending order, to: the input sequence
xN to be encoded, the clusters shown with colors, and the output
sequence x̂N of codevectors.

J. Audio Eng. Sco., Vol. 67, No. 4, 2019 April 5



Rocamora, Cancela, Biscainho PAPERS

tatum pulses equally distributed within the annotated beats.
The corresponding feature value is taken as the maximum
within a 100 -ms window centered at the frame closest to
each tatum instant. This yields 16 -dimension feature vec-
tors whose coordinates correspond to the tatum pulses of
the rhythm cycle.

Then, a feature map of the cycle-length rhythmic pat-
terns of a performance is obtained by building a matrix
whose columns are consecutive feature vectors. An exam-
ple of such a map, computed for the low-frequency band
of a recording in the dataset, is provided in Figure 3 (bot-
tom). The horizontal axis corresponds to the rhythm cy-
cle index, while the vertical axis corresponds to the sixteen
tatum pulses of a cycle, increasing upwards by convention.
This representation enables the inspection of the similari-
ties and differences between patterns, as well as their evo-
lution over time. Note that if a certain tatum pulse is ar-
ticulated for several consecutive rhythm cycles, it will be
shown as a horizontal line in the map.

2.3 Proposed rate-distortion method
The feature map of the performance is the primary input

source to encode. The resulting input space Rk has dimen-
sion k = 16, corresponding to the number of tatum pulses
in the rhythm cycle. Thus, the input vectors are of the form

x = [x1,x2, . . . ,x16]. (12)

Since features are normalized, each component xi takes
values in [0,1]. A complete performance of length N
rhythm cycles is represented by the sequence

xN = {x1,x2, . . . ,xN}. (13)

This sequence can also be regarded as a matrix

X = (xi, j), i ∈ [1,16], j ∈ [1,N], (14)

where i is the tatum index and j is the rhythm cycle index,
which represents the feature map.

The vector quantization is implemented according to the
generalized Lloyd algorithm. For this particular case, in
which the input is a finite set of points, this corresponds
to the k-means clustering algorithm. Therefore, each rhyth-
mic pattern x j of the performance is clustered to a partic-
ular group Rm and represented by its centroid χ̂m. Fig-
ure 3 shows with different colors the grouping obtained
for a codebook of size M = 4. The input sequence xN is
represented by the encoded sequence x̂N comprising only
elements of the codebook CM .

A distortion value, d(x j, χ̂m), is computed between ev-
ery pattern symbol x j of the sequence and its correspond-
ing codevector χ̂m, using the squared-error distortion de-
fined in Equation 7. Then, the distortion of the whole input
sequence xN is obtained by averaging the per-symbol dis-
tortion, using Equation 6. The bit-rate R of the encoded
sequence x̂N is computed as

R = −
M

∑
m=1

pm log2(pm) (15)

where M is the codebook size and pm is an estimate of the
probability of occurrence of each symbol. The probability
estimate pm is obtained as pm = nm

N , with nm = #{χ̂m =

x̂ j}, ∀ x̂ j ∈ x̂N , j ∈ [1,N], where # denotes the cardinality
of the set, and thus nm represents the number of occur-
rences of the codevector χ̂m in the encoded sequence x̂N ,
which is normalized by the total length N of the sequence.

The coding process described so far relies on a single pa-
rameter, namely the codebook size M. Therefore, an opera-
tional rate-distortion curve is obtained by varying the code-
book size M and computing the corresponding values for
rate and distortion. An example of this type of operational
curve is depicted in Figure 4, for the same audio file used
in Figure 3. Note that the rate is expressed in bits and the
distortion is a mean squared-error value. The number next
to an operational point indicates the corresponding value
of the codebook size M. The behavior of the rate-distortion
curve is as expected: as the codebook size is increased, the
distortion diminishes while the rate grows.

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Distortion (mean squared-error)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
a
te

 (
b
it

s)

1

2

3

4

5

6
7
8

10

15

20

25

30

Fig. 4. Operational rate-distortion curve for a real recording.

The k-means clustering is initialized with reconstruction
points selected at random, which can have an impact on
the obtained clusters. For this reason, in the reported ex-
periments the k-means clustering is repeated 10 times and
the best solution is selected according to the overall min-
imum sum of distances of cluster members to centroids.
To further mitigate the initialization effect, the process for
computing every point in the curve is repeated 10 times,
and the median values for rate and distortion are used.

3 Experiments and results

Three different types of experiments are reported aim-
ing at assessing the usefulness of the proposed approach.
Firstly, the operational rate-distortion curves are used to
qualitatively characterize drumming performances in terms
of their overall complexity. Some possible implications of
this method to the description of performance style and
player expertise are also discussed. Then, the problem of
estimating the number of different rhythmic patterns in a
given performance is addressed within the rate-distortion
framework. The solution investigated corresponds to se-
lecting an operational point in the curve that adequately
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balances the rate-distortion trade-off. Finally, in the light of
the previous experiments, the last problem addressed aims
at identifying which one of the beats corresponds to the
downbeat, without using any high-level information about
the rhythm except for its four-beat division. By comparing
the rate-distortion curves of the different possible align-
ments of the four beats within the rhythm cycle, it turns
out that the correct solution yields the less complex repre-
sentation for a large part of the available recordings, thus
allowing the automatic detection of the downbeat. The un-
derlying rationale for the success of the method as well as
its limitations are discussed and illustrated with examples.

3.1 Dataset of audio recordings
The music corpus for this study is a dataset of candombe

recordings released in a previous work [34].2 The record-
ings were produced using professional audio equipment,
during various studio sessions [35], in the context of musi-
cological research. The audio files are stereo with a sam-
pling rate of 44.1 kHz and 16-bit precision. The dataset
comprises 35 complete performances, totaling over 2 hours
of audio. A total of 26 renowned players took part, in
groups of three to five drums. The location of beats and
downbeats was manually annotated by a music expert.

3.2 Comparison of performance complexity
The operational rate-distortion trade-off will show a dif-

ferent behavior depending on the performance complexity.
Firstly, the rate-distortion curve is determined by the num-
ber of codevectors needed to properly encode the sequence.
For instance, if there are several different rhythmic patterns
played, then a small codebook size will not suffice to cor-
rectly describe the performance and will necessarily yield
a high distortion value. Besides that, there is the issue of
how well each group of patterns is represented by a single
codevector. The amount of variability of the patterns within
a certain group will also contribute to increase the distor-
tion, even for the correct codebook size. For these reasons,
the rate-distortion curves of different performances will lie
in different regions, simpler performances yielding lower
rate-distortion values compared to the more complex ones.
This is illustrated in the following experiment.

3.2.1 Experiment 1
Four different complete performances from the dataset

were selected and classified by a music expert with regards
to the overall complexity of the piano drum part. For each
recording the low-frequency feature was extracted, the in-
put sequence xN was constructed using the beat/downbeat
labels and the operational rate-distortion curve was com-
puted varying the codebook size from 1 to 30. This is
the standard procedure adopted for all the reported experi-
ments. The resulting curves are depicted in Fig. 5, together
with an excerpt of the input sequence xN of each perfor-
mance. From left to right, the input sequences are sorted

2http://www.eumus.edu.uy/candombe/
datasets/ISMIR2015/
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Fig. 5. Comparison of performance complexity. Rate-distortion
curve (top) and an excerpt of the input feature sequence xN (bot-
tom) for four different complete performances from the dataset.
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Fig. 6. Comparison of the rate-distortion curves of complete per-
formances corresponding to two different piano drum players.

in a decreasing order of complexity, according to the judg-
ment of the music expert. Note that the same ordering is ev-
idenced in the operational rate-distortion curves, the more
complex performances indicated with darker lines.

There are many possible ways to characterize the rate-
distortion curves and to summarize their behavior into a
single number. For instance, the distortion value for the
codebook size M = 1, i.e. the zero-rate point, preserves the
ordering of performance complexity. However, it ignores
the behavior of the curve for other codebook sizes. An-
other option is to compute the area under curve (AUC). To
do that, the curve is extrapolated to estimate a cut-off point
in the ordinates (with a polynomial fit considering the last
10 values) and the AUC is calculated using the numerical
trapezoidal rule for approximating integrals. The AUC val-
ues obtained in this way are shown in Fig. 5 and are con-
sistent with the qualitative ordering of the performances.
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rhythmic pattern audio file
1 2 3 4 5 6

180 120 60 60 60 30

0 0 0 0 30 30

0 0 60 30 30 30

0 0 0 60 30 30

0 60 60 30 30 30

0 0 0 0 0 30

Fig. 7. Rhythmic patterns used in the experiment (left) and num-
ber of cycles per rhythmic pattern in each audio file (right).

3.2.2 Experiment 2
It is reasonable to assume that the degree of complex-

ity displayed in a performance is voluntarily controlled by
the player, depending on the musical context. At the same
time, it can be associated with personal style and expertise.

In order to illustrate these issues, a comparison is car-
ried out considering 9 performances from the same record-
ing session, the piano drum played by one performer in
five of them and by another one in the remaining four. The
rate distortion curves and their AUC values are presented in
Figure 6. Two groups of recordings are readily distinguish-
able, each one corresponding to a different performer. This
indicates their personal styles were consistent and clearly
different from each other during the whole recording ses-
sion, which once again matches subjective assessment.

3.3 Estimation of number of rhythmic patterns
The next problem addressed is the automatic estima-

tion of the number of rhythmic patterns in a given record-
ing. This can be useful for detection and classification
of rhythmic patterns, performance style comparison and
beat/downbeat tracking [36, 34]. Since the feature values
are continuous and the rhythmic patterns may exhibit sev-
eral variations within a recording, the problem can be re-
garded as finding a good compromise between a concise
account of a given performance and a sufficiently pre-
cise description of its rhythmic patterns. Within the rate-
distortion framework this corresponds to selecting a certain
operating point of the trade-off. If a detailed representa-
tion is required, then the number of rhythmic patterns (i.e.
the codebook size) has to be increased, at the expense of
a necessarily longer performance description (i.e. higher
rate). This can be posed as an optimization problem which
can be solved using the discrete version of the Lagrangian
method [19]. But it still requires that one finds the optimal
value for λ , a problem tackled in the following experiment.

3.3.1 Experiment 3
If a sufficiently large and representative training set is

available, one can search for an optimal value for the La-
grange multiplier λ , in the sense of yielding the correct
number of rhythmic patterns for most of the data at hand.

This approach is illustrated in the following. A set of rhyth-
mic patterns usually found in candombe performances was
considered, and audio files that followed them were synthe-
sized. To do that, music scores with the rhythmic patterns
were produced in a general purpose music engraving soft-
ware language, adopting some conventions to represent the
different types of strokes. Several sound samples of each
type of stroke, recorded by a professional musician, were
randomly selected by the synthesis program, which is able
to interpret local accents and variations in dynamics.

The music scores of Fig. 7-left represent the six pi-
ano rhythmic patterns that were used in the experiment,
comprising four base patterns and two repicado patterns.
Lower and upper line represent hand and stick strokes re-
spectively and the muffled strokes are indicated with a
cross. Six audio files of the same length (180 rhythm cy-
cles) were rendered by gradually incrementing the number
of different patterns included, up to a uniform distribution
of all of them. Fig. 7-right shows the of number of cycles
per rhythmic pattern in each audio file.

Then, the rate-distortion curves were computed and the
discrete Lagrangian method was applied to them, i.e. the
minimization in equation 8 was performed. For each curve,
the λ values that yield the correct number of patterns were
looked for, following a grid-search scheme. The grid of val-
ues considered is in the range λ = [0.001,0.05] with a step
of 0.0001. Fig. 8 shows the rate-distortion curves, along
with the extremes of the grid represented with a dashed
line. The range of valid λ values for each audio file, i.e. the
ones producing the correct number of patterns, is also indi-
cated as a light grayed out region. If the extent of valid λ

values among different files is considered, it turns out that
the range λ[1,6] = [0.0058,0.0099] yields the correct solu-
tion for all files, shown as a darker grayed out region. The
next experiment tests this approach with real recordings.

3.3.2 Experiment 4
This experiment tackles the estimation of the number of

different rhythmic patterns in real recordings, considering
the four complete performances introduced in Fig. 5. For
this purpose, the discrete Lagrangian method is applied us-
ing a value of λ ∗ = 0.00785, the mean of the range λ[1,6].
This is represented graphically in Fig. 9-top, as lines with
slope −1/λ ∗ intersecting each rate-distortion curve. The
solutions obtained in this way suggest a number of patterns
M of 6, 4, 3, and 2 for the recordings sorted in decreasing
order of complexity. The encoding of each performance is
presented in Fig. 9-bottom using the corresponding esti-
mate of the number of patterns as the codebook size.

Unlike the previous synthetic experiment there is no
ground-truth in this case, but the automatic encodings
match the description of the performances provided by the
music expert, which, from a musicological point of view,
validates the approach.

3.4 Downbeat detection
The last type of experiment recasts the downbeat detec-

tion task as a data compression problem. Assuming the lo-
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Fig. 8. Rate-distortion curves (blue) for the synthetic audio files. Extremes of the grid of λ values are depicted with dashed lines. The
range of valid λ values for each file and the range in common for all files are shown as light and dark grayed out regions, respectively.
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Fig. 9. Estimation of the number of rhythmic patterns for the per-
formances of Fig. 5. Dashed lines intersecting each rate-distortion
curve (top) represent the discrete Lagrangian minimization ap-
plied. The resulting coding using the estimated number of pat-
terns as the codebook size is depicted with colors (bottom).

Fig. 10. Schematic representation of two possible rhythmic pat-
tern alignments which imply different codebook sizes.

cation of beats is known, the aim is to identify which one
of them corresponds to the downbeat. This is addressed by
considering the different possible alignments of the four
beats within the rhythm cycle. When rhythmic patterns of
one-cycle length are considered, their alternation along the
whole performance can give a hint on the location of the
downbeat. In particular, the correct alignment will prob-
ably allow for a less complex description of the input se-
quence when compared to the misaligned options, since the
latter will likely require more clusters to accommodate the
patterns variability caused by the misalignment.

This is schematically illustrated in the example of
Fig. 10. Consider the input vectors x j, j ∈ [1,N], one af-
ter the other as a single stream of features. To produce the
input sequence xN , they have to be assembled in groups
with the length of a rhythm cycle, which is 16 tatum pulses
in this case. Suppose there are only two different rhythmic
patterns played, say a base and a repicado pattern (notated
as b and r in Fig. 10). Therefore, the correct alignment—the
one consistent with the downbeat—can be optimally repre-
sented with a codebook of only two codevectors. However,
other alignments will produce rhythmic patterns that are
combinations of the original ones, yielding base-repicado
(br), repicado-base (rb) and base-base (bb) patterns. Thus,
a codebook of three codevectors is needed, leading to a
more complex description of the input sequence.

When the downbeat detection of an audio file is handled,
each beat of the four-beat rhythm cycle is alternatively con-
sidered as the downbeat, so four different alignments have
to be evaluated. The different alignments are implemented
as circular shifts of the feature map, starting from a shift of
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0 beat (i.e. no shift) up to a shift of 3 beats. Larger shifts
are redundant and therefore not considered—e.g. a shift of
4 beats produces no shift. Then, operational rate-distortion
curves are computed for each different alignment.

This is shown in Fig. 11 for three of the synthetic audio
files of Section 3.3, involving 3, 4 and 5 rhythmic patterns
respectively. The complexity measures are also included in
Fig. 11 for each one of the shifts, namely the area under
curve (AUC), and the minimum value of the Lagrangian
rate-distortion functional (Jmin). The discrete Lagrangian
method is applied using a value of λ ∗ = 0.00785 (the mean
of the range λ[1,6]), and the codebook size M obtained in
this way is also indicated. It can be seen that for all the au-
dio files the correct alignment produces a curve that takes
lower rate-distortion values compared to the shifted ones.
Note that complexity measures also show this behavior,
and that even in those cases when the codebook size is
the same the correct alignment yields a smaller distortion
value, which indicates that each group of patterns is better
represented by a single codevector.

The previous examples indicate that the downbeat could
be identified by comparing the rate-distortion trade-off of
the different alignments. Nevertheless, the rationale for this
is the alternation of patterns in the recording, and there may
be some cases which fail to provide enough information for
downbeat detection. To further illustrate this, the analysis
of two real recordings of the dataset, namely e and d, is
considered in the following.

Recall the diagram of Fig. 10, in which the correct align-
ment yields the shortest codebook size. This situation is
illustrated in Fig. 12, for recording e, which contains base
and repicado patterns. The shifting of the feature map gives
rise to a higher number of rhythmic patterns, so the com-
plexity of the description needed to account for the perfor-
mance is increased. Note that in this case both complexity
measures favor the selection of the correct alignment.

However, it is fairly obvious that if the performance con-
tains a single pattern all alignments will be equivalent.
Moreover, even in the case where there is more than one
pattern the complexity of the different alignments may look
all the same. For instance, in recording d—the most simple
of the recordings introduced in Fig. 5—the differences be-
tween the patterns are confined to a single beat, as shown
in Fig. 13. There is only one base pattern throughout the
whole performance which sometimes shows an ornamen-
tation in the fourth beat. Thus, shifting the patterns only
relocates the ornamentation to a different beat, so the rate-
distortion curves and measures provide no evidence to pre-
fer one alignment over the others.

This second example stresses the fact that the proposed
downbeat detection approach requires not only the alter-
nation of different rhythmic patterns but also that the dif-
ferences between them span over the whole rhythmic cy-
cle, as in recording e (see Fig. 12). In fact, if there were
no differences between the rhythmic patterns for a certain
beat during the entire recording, i.e. the four tatums of the
beat always were articulated in the same way, then this
beat would carry no information regarding the location of
the downbeat and ambiguity would arise between different

shifts. Nevertheless, note that differences between base and
repicado patterns usually extend over the whole rhythmic
cycle (see for instance the music scores of Fig. 7). Conse-
quently, the method is likely to succeed for a performance
that alternates the typical base and repicado patterns. On
the other hand, if the performance is too simple, the down-
beat may not be identified correctly. It is interesting to note
that the degree of complexity of the performance could be
estimated beforehand, even without knowing the location
of the downbeat. The AUC or Jmin value for an arbitrary
alignment could be used for that purpose, since their values
are very similar for the different alignments. More reliable
measures could be devised to assess the degree of confi-
dence in the downbeat estimation taking into account the
extent of the differences between the rhythmic patterns.

3.4.1 Experiment 5
The proposed approach for downbeat detection is tested

herein over the whole dataset. For each recording the low-
frequency feature was extracted and the beat/downbeat la-
bels were used to render the four different alignments of
the beats within the rhythm cycle. Then, for each different
alignment the operational rate-distortion curve was com-
puted and the complexity measures were calculated. The
downbeat was estimated as the beat corresponding to the
shift that minimizes the complexity measure. A process
similar to that of Fig. 8 was applied in a leave-one-out
scheme for determining the λ value for the discrete La-
grangian method. The overall correct detection attained is
65.7% for the AUC, and 74.3% for the Jmin measure. 3

As expected, some recordings are troublesome for the
method, such as the recording analyzed in Fig. 13 and the
three other recordings of the same performer (the AUC
measure criterion fails in all of them, while the Jmin mea-
sure misses two). Apart from having the lowest degree of
complexity of the whole dataset (i.e. AUC value), all of
them consist of a single pattern occasionally ornamented
in the fourth beat, and as previously noted fail to provide
enough information for downbeat detection. Both mea-
sures fail in some other recordings, which exhibits only a
single base pattern with a few simple variations. In this
case, the patterns show virtually no differences at a certain
beat during the entire performance, thus leading to ambigu-
ity in the selection of the downbeat. It is interesting to note
that for a large number of the recordings (22/35, 62.9%) the
estimation of the downbeat is correct with both measures.

4 Discussion and conclusions

In this paper a novel approach for percussion music
analysis based on information theory concepts was pro-
posed. Given an audio recording of a percussion music
performance, one computes a lossy representation that cap-
tures much of its underlying regularity but tolerates some

3The values of the complexity measures obtained for each file
of the dataset are provided in the companion web page https:
//iie.fing.edu.uy/˜rocamora/JAES2018/.
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Fig. 11. Downbeat detection analysis for three of the synthetic audio files introduced in Figure 7, involving 3, 4 and 5 rhythmic patterns.
The rate-distortion curves correspond to the four different possible alignments of the beats within the rhythm cycle.
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Fig. 12. Downbeat detection analysis for a recording of the
dataset (e) with base and repicado patterns. The rate-distortion
curves and the feature maps excerpts correspond to the four dif-
ferent possible alignments of the beats within the rhythm cycle.

amount of distortion. Thus, within a rate-distortion theory
framework, the study of the trade-off between rate and dis-
tortion allows for the extraction of some relevant informa-
tion about the performance.

Several experiments were conducted in order to assess
the usefulness of the proposed approach when applied to a
dataset of candombe drumming audio recordings. In partic-
ular, different performances were compared according to a
measure of their overall complexity drawn from the opera-
tional rate-distortion curve, yielding results which roughly
correspond to subjective judgment and correlate well with
personal style and expertise. In addition, the estimation of
the number of different rhythmic patterns in the recording
was posed as the problem of selecting an operational point
of the rate-distortion curve. The outcome of this method
provided compact representations of the performances that
are quite in accordance with manual analysis. Finally, the
downbeat detection task from an audio signal was formu-
lated as a data compression problem. To do that, the dif-
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Fig. 13. Downbeat detection analysis for a recording of the
dataset (d) with only a base pattern occasionally ornamented in
the fourth beat. The four different possible alignments are con-
sidered.

ferent possible alignments of the beats within the rhythm
cycle were considered, and the one providing the most suc-
cinct representation—in terms of the rate-distortion trade-
off—was selected as the downbeat. The method proved to
be effective for a large part of the dataset, and the underly-
ing rationale for its success as well as its limitations were
discussed and illustrated with examples.

Previous work reported better downbeat detection re-
sults on the same dataset [34].4 However, the previous ap-
proach is based on tracking rhythmic patterns that are in-
formed to the algorithm, either based on a priori musical
knowledge about the rhythm, or learned from the labeled
database. The herein proposed method constitutes a novel
idea for tackling the downbeat detection problem that is
less grounded on high-level information about the rhythm

4Result for the Jmin measure corresponds to an Fmeasure of
74.3, whereas values between 76.9 and 80.6 are reported in [34].
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or in a training scheme, and could be combined with any
other existing method as another source of information.

A natural extension of the present work is taking into
account the cost of describing the chosen model itself, as
in the Minimum Description Length (MDL) approach. Be-
sides, other information theory frameworks for model se-
lection and the application of the proposed approach to
other types of music that exhibit repeated rhythmic patterns
(e.g. Afro-Brazilian) will be tackled in future work.
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