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Abstract

Most of the research conducted on information technologies applied to music has
been largely limited to a few mainstream styles of the so-called ‘Western’ music.
The resulting tools often do not generalize properly or cannot be easily extended
to other music traditions. So, culture–specific approaches have been recently pro-
posed as a way to build richer and more general computational models for music.

This thesis work aims at contributing to the computer–aided study of rhythm,
with the focus on percussion music and in the search of appropriate solutions
from a culture–specific perspective by considering the Afro-Uruguayan candombe
drumming as a case study. This is mainly motivated by its challenging rhythmic
characteristics, troublesome for most of the existing analysis methods. In this way,
it attempts to push ahead the boundaries of current music technologies.

The thesis offers an overview of the historical, social and cultural context in
which candombe drumming is embedded, along with a description of the rhythm.

One of the specific contributions of the thesis is the creation of annotated
datasets of candombe drumming suitable for computational rhythm analysis. Per-
formances were purposely recorded, and received annotations of metrical informa-
tion, location of onsets, and sections. A dataset of annotated recordings for beat
and downbeat tracking was publicly released, and an audio-visual dataset of per-
formances was obtained, which serves both documentary and research purposes.

Part of the dissertation focused on the discovery and analysis of rhythmic
patterns from audio recordings. A representation in the form of a map of rhythmic
patterns based on spectral features was devised. The type of analyses that can be
conducted with the proposed methods is illustrated with some experiments.

The dissertation also systematically approached (to the best of our knowledge,
for the first time) the study and characterization of the micro–rhythmical proper-
ties of candombe drumming. The findings suggest that micro–timing is a structural
component of the rhythm, producing a sort of characteristic “swing”.

The rest of the dissertation was devoted to the automatic inference and tracking
of the metric structure from audio recordings. A supervised Bayesian scheme for
rhythmic pattern tracking was proposed, of which a software implementation was
publicly released. The results give additional evidence of the generalizability of
the Bayesian approach to complex rhythms from different music traditions.

Finally, the downbeat detection task was formulated as a data compression
problem. This resulted in a novel method that proved to be effective for a large
part of the dataset and opens up some interesting threads for future research.





Resumen

La mayoŕıa de la investigación realizada en tecnoloǵıas de la información aplicadas
a la música se ha limitado en gran medida a algunos estilos particulares de la aśı
llamada música ‘occidental’. Las herramientas resultantes a menudo no generalizan
adecuadamente o no se pueden extender fácilmente a otras tradiciones musicales.
Por lo tanto, recientemente se han propuesto enfoques culturalmente espećıficos
como forma de construir modelos computacionales más ricos y más generales.

Esta tesis tiene como objetivo contribuir al estudio del ritmo asistido por
computadora, desde una perspectiva cultural espećıfica, considerando el candombe
Afro-Uruguayo como caso de estudio. Esto está motivado principalmente por sus
caracteŕısticas ŕıtmicas, problemáticas para la mayoŕıa de los métodos de análisis
existentes. Aśı, intenta superar los ĺımites actuales de estas tecnoloǵıas.

La tesis ofrece una visión general del contexto histórico, social y cultural en el
que el candombe está integrado, junto con una descripción de su ritmo.

Una de las contribuciones espećıficas de la tesis es la creación de conjuntos
de datos adecuados para el análisis computacional del ritmo. Se llevaron adelante
sesiones de grabación y se generaron anotaciones de información métrica, ubicación
de eventos y secciones. Se disponibilizó públicamente un conjunto de grabaciones
anotadas para el seguimiento de pulso e inicio de compás, y se generó un registro
audiovisual que sirve tanto para fines documentales como de investigación.

Parte de la tesis se centró en descubrir y analizar patrones ŕıtmicos a partir de
grabaciones de audio. Se diseñó una representación en forma de mapa de patrones
ŕıtmicos basada en caracteŕısticas espectrales. El tipo de análisis que se puede
realizar con los métodos propuestos se ilustra con algunos experimentos.

La tesis también abordó de forma sistemática (y por primera vez) el estudio y
la caracterización de las propiedades micro ŕıtmicas del candombe. Los resultados
sugieren que las micro desviaciones temporales son un componente estructural del
ritmo, dando lugar a una especie de “swing” caracteŕıstico.

El resto de la tesis se dedicó a la inferencia automática de la estructura métrica
a partir de grabaciones de audio. Se propuso un esquema Bayesiano supervisado
para el seguimiento de patrones ŕıtmicos, del cual se disponibilizó públicamente
una implementación de software. Los resultados dan evidencia adicional de la
capacidad de generalización del enfoque Bayesiano a ritmos complejos.

Por último, la detección de inicio de compás se formuló como un problema
de compresión de datos. Esto resultó en un método novedoso que demostró ser
efectivo para una buena parte de los datos y abre varias lineas de investigación.
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Chapter 1

Introduction

The work presented in this dissertation deals with music—more specifically, per-
cussion music and musical rhythm—and is somehow at the crossroads of music-
related technology, automatic analysis of music and computational musicology,
while most tools, methods and concepts are drawn from signal processing, ma-
chine learning, statistics and information theory. This is probably to be expected,
since modern research on music often transcends the boundaries of the scien-
tific disciplines involved. The term “transdisciplinary” is sometimes used to de-
scribe the kind of approach needed—perhaps even more appropriate than the term
“interdisciplinary”—which suggests that music is such a complex and multifaceted
phenomena, that cannot be fully understood by a single discipline, or by different
disciplines that are just put next to each other without much interaction [179].

Music is a fundamental aspect of human life, so ubiquitous and of such a
paramount significance, that it can be even regarded as a human obsession [184].
There is no known culture, at present or in the past, that lacked a form of music,
and some of the oldest physical artefacts ever build by archaic humans are musical
instruments. All across the different cultures, it is a fundamental component of
social activities; whenever people gather together there is music. The emotional
power of music can touch us in profound ways, and constitutes a key factor in per-
sonal development [179]. Not surprisingly, music drives a strong economic sector
within the cultural industries, which have gained importance in the 21st century
and are becoming one of the most dynamic segments of the global economy [207].
In education, music is often a motivation for young people to develop interest in
science and technology. Moreover, music is an excellent tool to promote respect for
the diversity of social and cultural identity, and the care of cultural heritage [179].

It is therefore justified to say that music is more than just a domain of ap-
plication [179]. To pose questions about such a fundamental human ability is to
implicitly ask questions about perception, cognition, evolution, human interaction,
culture and society. This means that understanding what music is, why we like it,
and how we bond with it direct us to essential aspects of human nature [184].

The attribute of rhythm is of central importance in music. It concerns the
way in which the musical events are arranged in time, grouped and organized,
forming different structures and patterns. The topic has received increased at-
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tention in the past few decades, from scientific fields such as music theory, ex-
perimental psychology and cognitive science [193], resulting in novel theories of
rhythmic organization [181]. This ultimately led to the implementation of com-
putational models that are applicable in musicology, music search and discovery,
and also to the study of music perception and cognition [280]. Nonetheless, so far,
most of the research conducted has been largely limited to a few music traditions
and repertoires, mostly from European and North-American art and popular mu-
sic [36]. Since most of the approaches for computational rhythm analysis have not
been developed taking into account a multicultural context, they do not generalize
properly or cannot be easily extended to other music traditions [275].

This thesis work aims at contributing to the automatic and computer–aided
study of rhythm, approaching some current research challenges mainly from a mu-
sic technology background. It puts the focus on percussion music and in the search
of appropriate solutions from a culture specific perspective by considering the Afro-
Uruguayan candombe drumming as a case study. In this way, it also attempts to
contribute to the overall field by identifying limitations of current methodologies
and eventually providing some culture–aware insights that push ahead its bound-
aries towards the development of technologies that can deal with a wider range of
music traditions. It also strives for addressing the issue of how these technologies
could work as an effective tool leading to practical results that otherwise cannot be
obtained. In turn, this could allow for cross cultural comparative studies and may
help to preserve the diversity of our world’s music. In the following, this chapter
describes the research context and the motivation of the thesis. It also states the
main contributions of the work and gives an outline of the text.

1.1 Research context
During the last twenty years, a new multidisciplinary field of research, known as
Music Information Retrieval/Research (MIR), has emerged and steadily grown at
the intersection of audio music processing, machine learning, music theory and
musicology [262]. Primarily fuelled by the revolution brought by digital tech-
nology applied to music distribution and storage, it focuses on the processing of
digital data related to music (such as editorial metadata, symbolic representa-
tions, scores, lyrics, and audio), and the development of methodologies to pro-
cess and understand that data [266]. Most of the proposed methods and systems
rely on audio content, which is extracted by means of signal processing tech-
niques [213]. The gap between low-level descriptors extracted from audio signals
(e.g. energy, spectral content), mid-level representations (e.g. note onsets, pitch
estimates) and high-level musical concepts (e.g. meter, tempo, key), known as the
“semantic gap” [68,179], is usually tackled by the application of machine learning.

The vast majority of the technologies and models developed in the field of MIR
have been oriented towards mainstream popular music in the so-called ‘Western’
tradition,1 which has certainly conditioned the problems addressed and the solu-

1In [275], the term Eurogenetic music is proposed as a way to avoid the misleading
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1.1. Research context

tions obtained thus far. Although they proved to be effective for various music
styles and repertoires, it seems that culture–specific approaches are needed to deal
with other music traditions, such as those from Africa, China, India, or the Arab
world. Fortunately, over the last few years there have been increasing efforts de-
voted to the study of traditional, folk or ethnic music [267]. More importantly, it
has been gradually recognised in the MIR community that making sense of music is
much more than processing audio files into high–level musical objects, and that the
social, cultural and historical context in which music is embedded must be taken
into account, as it highly influences how music is produced and perceived [267].

Therefore, a multicultural perspective is now being promoted in MIR research,
in which other knowledge and methodologies, such as those from ethnomusicol-
ogy, are coming into play [266]. Ethnomusicology is the study of music in its
cultural context, considering what music means to its practitioners and audiences,
and how those meanings are conveyed. It is highly interdisciplinary, encompassing
several fields in the humanities and social sciences, such as cultural anthropology,
folklore, performance studies, dance, cultural studies, gender studies, and race or
ethnic studies. There are actually several terms to denote different and related
approaches within musicology, like systematic musicology and empirical musicol-
ogy [179]. Among them, computational ethnomusicology [286],2 can be considered
as the use of computational tools to assist in ethnomusicological research [291].
From this perspective, is ethnomusicology that could benefit from the advances
provided by research on MIR and sound and music computing. Nevertheless, it
can also be viewed as the connection of ethnomusicological concepts and frame-
works with computational modelling, so as to enrich the current data–driven ap-
proaches of MIR with knowledge–based alternatives [291]. What is more, as noted
in [137,291], computer models can be regarded as ‘theories’ or ‘hypothesis’ about
the problems tackled by ethnomusicologists, whose validity can be assessed empir-
ically with large music collections at a scale not feasible by traditional means.

In recent years, the idea of “national rhythms”, proposed by John Chas-
teen [71], has been given increasing importance in Latin American culture studies.
It refers to forms of popular dance and music that emerged from the mixture of
African and European dance and music traditions and that have gradually been
assumed as symbol and expression of national identity [17]. The historical process
by which they were created involved complex negotiations on issues of race, eth-
nicity, gender and social class, which represent the immense inequalities in status,
well-being and power that have determined the processes of racial mixing and cul-
tural creation throughout Latin America [16,58]. Among those national rhythms,
candombe drumming is one of the most characteristic elements of Uruguayan pop-
ular culture. Although it has been widely adopted by the society at large, it is
deeply rooted in the Afro–Atlantic tradition and remains a symbol of the iden-
tity of the communities of African descent in Montevideo [110]. Internationally
less known than other Latin American musics of African origin (such as Cuban

dichotomy of Western an non-Western music.
2Actually, according to [137], the term computational ethnomusicology can be traced

back more than thirty years.
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rumba and son, or Brazilian samba), Uruguayan candombe possess a considerable
rhythmic wealth, which has influenced and was incorporated into various genres of
popular music. In consequence, it deserves a thorough study to promote its wider
recognition and the care of its cultural heritage.

1.2 Motivation
The importance of rhythm as fundamental dimension of music makes it a highly
interesting topic of study. It is primarily an event-based phenomenon, so detecting
and characterizing those events and discovering how they are organized in time
into repeating structures and patterns, are important tasks that can be tackled
using computational tools. Analysing and understanding these rhythmic patterns
can provide useful insights into the music being studied and may help to extract
semantically meaningful higher level concepts. For instance, the rhythmic patterns
can be indicative of the underlying musical structure of a musical piece.

Furthermore, the tools developed for rhythm analysis can be further used in
several practical applications. These include digital audio workstations for music
editing and processing, DJ-mixing software and hardware products, and other tools
for creating music or performing live. With the need to handle large collections of
digital music, automatic tools for rhythm analysis can also be applied to problems
such as content based music retrieval, enhanced navigation of music collections
and intelligent music archival and organization. Consequently, the target users
of these technologies encompass from casual music listeners to musicians, music
students and teachers, including also musicologists and cognitive scientists, sound
engineers and music producers, as well as record labels and cultural institutions.

The study of percussion music provides a suitable scenario for bringing into
focus the rhythmic aspects of music, without the need of considering the interplay
with other music dimensions, such as melody and harmony. The selection of
candombe as a case study is motivated—apart from a musicological interest, and
because of its cultural relevance—by the fact that some of its characteristics are
troublesome for most of the existing rhythm analysis methods. The identification
of challenging music styles and the development of style-specific algorithms for
rhythm analysis is a promising direction of research to overcome these limitations.

In addition, the study of a particular music tradition outside the Western-
centred paradigm can help to build richer and more general models than the ones
that currently dominate the research on information technologies (IT) applied to
music [267]. At present, there is a significant gap between the current capabilities of
the music technologies used in commercial services and the needs of our culturally
diverse world. For example, during the last few years we have witnessed the
upsurge of music recommendation services which make extensive use of automatic
tools (e.g. Last.fm, Pandora, Spotify). But if the efforts aimed at the development
of IT applied to music are exclusively market–driven and do not take into account
a multicultural reality, the progress made can actually deepen the existing bias
towards the dissemination, recommendation and access to a very reduced type of
music, restricting the diversity of the offer [267].

4



1.3. Goals and scope of the thesis

In addition to the above, to the best of our knowledge, the research work
described in this dissertation is the first one to undertake the analysis of candombe
drumming using computational tools. For this reason, it is impelled by the goal
of producing relevant results and useful resources, so as to open up the way for
further research on the topic. At the same time, the opportunity to help bring the
attention of the research community to this rich music tradition, and the chance
to work in close collaboration with highly accomplished musicians and passionate
scholars, is a very rewarding task.

1.3 Goals and scope of the thesis
The goal of this thesis is to build musically informed and domain specific signal
processing and machine learning methods for rhythm analysis, oriented towards
Afro-Uruguayan candombe drumming. For this reason, it aims to bring in as much
musical knowledge to the methods as possible, so that the extracted information
is musically relevant and useful. In order to accomplish that, the work presented
relies on the musicological literature available and borrows from consultation with
music experts and renowned candombe drummers. In this respect, the research
work was supervised by Luis Jure, who has been involved in the study of candombe
drumming from a musicological perspective since the early 1990s.

The dissertation includes examples of the type of analyses that can be per-
formed with the proposed computational methods, which hopefully may help to
obtain a better understanding and provide deeper insights into the nature of can-
dombe rhythm. However, the thesis does not aim to make any significant musico-
logical conclusions. In addition, the analysis methods developed in the thesis in
no way aim to replace expert musician opinions.

An audio recording is the primary source of information considered and the
algorithms developed are intended to work on real world representative music
collections. Despite the fact that some music generation tools are implemented,
and that synthetic rhythmic patterns and performances are rendered as audio files
for experimental purposes, the thesis focuses only on music analysis and not on
music generation, composition and synthesis.

The broad goals of the research can be summarized as follows:

1. To build annotated music collections of candombe drumming (both audio
and video), useful for future research.

2. To identify challenges and opportunities in automatic rhythm analysis of
candombe drumming and formulate relevant analysis problems.

3. To convert those problems into engineering formulations amenable to quanti-
tative and qualitative analysis using signal processing and machine learning.

4. To propose and implement computational tools for rhythmic pattern discov-
ery and analysis for candombe drumming.

5
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5. To develop novel methods for rhythm analysis capable of tracking beats and
downbeats in candombe drumming.

Another goal of the thesis is to develop open and reproducible research. Hence,
all the data and code used in this work will be made available to the research com-
munity through open source platforms under open licenses. Whenever possible,
resources will be provided to reproduce the presented results.

1.4 Publications
The following is a list of publications and other forms of relevant scientific com-
munication that were produced in the context of this thesis work.

1.4.1 Complete papers in peer–reviewed conferences
[254] Mart́ın Rocamora, Luis Jure, and Luiz W. P. Biscainho. Tools for detec-

tion and classification of piano drum patterns from candombe recordings.
In Proceedings of the 9th Conference on Interdisciplinary Musicology (CIM
2014), pages 382–387, Berlin, Germany, 4-6 dec. 2014. iie.fing.edu.uy

[219] Leonardo Nunes, Mart́ın Rocamora, Luis Jure, and Luiz W. P. Biscainho.
Beat and downbeat tracking based on rhythmic patterns applied to the Uru-
guayan candombe drumming. In Proceedings of the 16th International So-
ciety for Music Information Retrieval Conference (ISMIR 2015). Málaga,
Spain, pages 264–270, 26-30 oct. 2015. ismir2015.uma.es

[252] Mart́ın Rocamora and Luiz W. P. Biscainho. Modeling onset spectral fea-
tures for discrimination of drum sounds. In Proceedings of the 20th Iberoamer-
ican Congress on Pattern Recognition (CIARP 2015). Montevideo, Uruguay,
pages 100–107, 9-12 nov. 2015. link.springer.com

[197] Bernardo Marenco, Magdalena Fuentes, Florencia Lanzaro, Mart́ın Roca-
mora, and Alvaro Gómez. A multimodal approach for percussion music
transcription from audio and video. In Proceedings of the 20th Iberoameri-
can Congress on Pattern Recognition (CIARP 2015). Montevideo, Uruguay,
9-12 nov. 2015. link.springer.com

[255] Mart́ın Rocamora, Luis Jure, Bernardo Marenco, Magdalena Fuentes, Flo-
rencia Lanzaro, and Alvaro Gómez. An audio-visual database of candombe
performances for computational musicological studies. In Proceedings of the
II Congreso Internacional de Ciencia y Tecnoloǵıa Musical (CICTeM 2015),
pages 17–24, Buenos Aires, Argentina, 26-28 sep. 2015. iie.fing.edu.uy

1.4.2 Extended abstracts in peer–reviewed conferences
[159] Luis Jure and Mart́ın Rocamora. Microtiming in the rhythmic structure

of candombe drumming patterns. In Fourth International Conference on
Analytical Approaches to World Music, New York, USA, June 8-11 2016.
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[160] Luis Jure and Mart́ın Rocamora. Clave patterns in Uruguayan candombe
drumming. In 16th Rhythm Production and Perception Workshop, Birming-
ham, UK, July 3-5 2017.

1.4.3 Other presentations in workshops and conferences
[253] Mart́ın Rocamora and Luis Jure. Rhythmic pattern tracking: the Urugua-

yan candombe drumming as a case study, September 26–28 2013. Oral pre-
sentation at the I Congreso Internacional de Ciencia y Tecnoloǵıa Musical
(CICTeM 2013), IUNA. Buenos Aires, Argentina.

[250] Mart́ın Rocamora. Automatic analysis of percussion music: the Afro-Uruguayan
candombe drumming as a case study, October 12–15 2014. Short oral pre-
sentation at the II International Workshop on Cross-disciplinary and Multi-
cultural Perspectives on Musical Rhythm and Improvisation, New York Uni-
versity Abu Dhabi. Abu Dhabi, United Arab Emirates.

[251] Mart́ın Rocamora. Interpersonal music entrainment in Afro-Uruguayan can-
dombe drumming, July 13–19 2017. Oral presentation at the 44th Interna-
tional Council for Traditional Music (ICTM) World Conference. Limerick,
Irleand. Work in collaboration with Nori Jacobi, Rainer Polak and Luis Jure.

1.5 Organization and outline of the thesis
The rest of the manuscript is organized as follows.

Chapter 2. Afro-Uruguayan Candombe The aim of this chapter is to give an
account of the main historical and cultural aspects of the practice of candombe,
including a description of the most relevant musical traits of its rhythm and the
way it is performed.

Chapter 3. Data collection and generation The chapter is devoted to the de-
scription of the data and music collections used in this thesis work. It also presents
a dataset of labelled candombe recordings for beat and downbeat tracking and an
audio-visual database of candombe performances, both created during the devel-
opment of the research described in this dissertation.

Chapter 4. Audio features In this chapter, the audio features used throughout
the thesis are presented. The audio feature extraction process and some represen-
tations built upon it are described. The usefulness of the features is assessed in
the context of onset detection and classification of candombe drum sound events.

Chapter 5. Analysis of rhythmic patterns In this chapter some techniques are
proposed for the detailed analysis of the rhythmic patterns of candombe drumming
from audio recordings. A set of tools is proposed for the study of rhythmic patterns
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that span over the four-beat cycle, with the aim of investigating its different types
and forms. Additionally, some experiments are proposed in order to assess the
exact nature of the micro-temporal deviations found in the rhythmic patterns.

Chapter 6. Beat and downbeat tracking The chapter deals with the develop-
ment of a beat and downbeat tracking algorithm suitable for candombe drumming
recordings. A supervised scheme for rhythmic pattern tracking is proposed, which
aims at finding the metric structure from an audio signal, including the phase of
beats and downbeats.

Chapter 7. Analysis based on information theory The main motivation of this
chapter is to recast the down-beat detection task as a data compression problem.
For this purpose, a lossy compression framework based on the rate-distortion the-
ory is adopted. Additionally, it turns out that the obtained description is well
suited for addressing other related tasks, namely the assessment of performances’
complexity and the estimation of the number of different rhythmic patterns in a
given recording.

Chapter 8. Conclusions The document ends with a critical discussion of the
thesis work, including some directions for future research.
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Chapter 2

Afro-Uruguayan Candombe

2.1 Introduction
Arguably the most widespread vision of Uruguay—both from inside and abroad—is
that of a country of white population comprised of descendants of European im-
migrants, mainly from Spain and Italy [23,64]. This was a praised attribute of na-
tional identity for more than a century—since the late 1800s and early 1900s—that
supposedly differentiated the country favourably from the rest of Latin America,
at least in the eyes of the dominant elites [18,64]. This homogeneous self-portrait
of the Uruguayan population is said to have contributed to social cohesion, but
more than likely at the expense of neglecting and excluding some of the cultural
legacy of minorities [64]. It is only in the last few decades that the diversity of the
Uruguayan population is being widely recognized, and the role of various ethnic
groups is being thoroughly studied [24,64,116,211,241,242].

During the period of Spanish colonial rule, thousands of enslaved Africans
were brought to the land corresponding to Uruguay, formerly known as Banda
Oriental—the eastern shore of the Uruguay river. Africans and their descendants
took active part in the process of independence and played important roles in the
national life of the country. Being an heterogeneous community, they gathered
in numerous social and civic organizations, and following the abolition of slavery
they created the second-largest black press in Latin America and a racially defined
political party [18]. Afro-Uruguayans were also key contributors to the shaping of
the popular culture of the country and two of its most important musical forms,
tango [127] and—to a greater extent—candombe [106].

Nowadays, the practice of candombe is one of the most characteristic and
defining features of Uruguayan popular culture, and while still being primarily
associated with the Afro-Uruguayan community, it has long been adopted by the
society at large. At the same time, it is probably the most obvious local sign of
African ancestry, linking Afro-Uruguayans to the so-called Afro-Atlantic diaspora
[123]. The fundamental component of this tradition is the candombe drumming,
performed by groups of drums playing a distinctive rhythm. All along the year,
specially on weekends and public holidays, players meet at specific points to play
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candombe marching on the street, as shown in Fig. 2.1. Since 1956, the municipal
government of Montevideo—Uruguay’s capital city—organizes during Carnival a
major event convoking thousands of people, named the Desfile Oficial de Llamadas,
a parade of candombe groups called comparsas, comprising not only drums but
also dancers and traditional characters in costume. In the last decade of the 20th
century, candombe drumming grew in popularity, and today groups of performers
can be found all over Montevideo, as well as in other cities of the country, which also
celebrate highly attended events during Carnival. Its rhythm was also integrated
in different ways into several genres of popular music, like tango rioplatense, canto
popular (folkloristic popular song), beat/pop/rock in the so-called candombe beat,
etc. In 2009, candombe was inscribed on the Representative List of the Intangible
Cultural Heritage of Humanity by UNESCO, taking into account, among other
things, that it is “a source of pride and a symbol of the identity of communities of
African descent in Montevideo” [287].

Figure 2.1: Group of Candombe drummers. (Mario Marotta, reproduced with permission)

In order to acknowledge this cultural context and its origins, the term Afro-
Uruguayan is adopted in this work to refer to candombe. This is common practice in
the musicological realm in Uruguay since the pioneering work by Lauro Ayestarán
(1913-1966) [27–31], who designated some music and instruments as being Afro-
Uruguayan, and also used the denomination Afro-Montevidean to circumscribe
them only to the capital city. Besides, this kind of terms, such as Afro-descendent,
are promoted by a large part of the black movement not only in Uruguay but
throughout Latin America [18, 247, 256]. It is an attempt to replace the language
of race, based on phenotypes—e.g. colour or facial features—with the language
of ethnicity—based on e.g. common ancestry, religion, place of origin or other
cultural heritage [18]. Therefore, it is applied to those individuals considered
by themselves or by others to be of ‘black’ African ancestry, as well as to their
cultural elements and practices [16]. The motivation of this preference for ethnic
over race terminology is based on the present understanding of race strictly as a
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social construct1 that segments the human population into ranked categories that
defines people as superior or inferior according to their phenotypes [243].

In short, candombe drumming and its related practices play key roles in Uru-
guayan popular culture. On the one hand, candombe has been widely adopted
as a national rhythm2 [18, 71], and is regarded as an identity mark by a large
part of the population. On the other hand, since it was mainly developed by an
ethnic-racial group under domination and later subordination, it grew into a sign
of cultural resistance which gained paramount importance for African descendants,
even nowadays. Somewhat paradoxically, this profound cultural meaning is often
overlooked by both the government and large part of the society, binding can-
dombe only to Carnival and show-business, which ultimately contributes to social
impairment of Afro-Uruguayans and to racism [103,109,247,256].

The study of candombe from a musicological perspective dates back to the
pioneering work by Lauro Ayestarán in the 1950s [27–31], followed by his disciple
Coriún Aharonián [5–7]. Several years later, a new generation of researchers focus
on candombe by the late 1980s and early 1990s [104, 105, 124, 156, 157]. Following
this studies, the book by Luis Ferreira is considered a milestone [106]. Subsequent
musicological work produced by the same authors include [107, 108, 110–112, 125,
126, 158, 235–237]. Nevertheless, considering a broader scope, the early scholarly
literature on Afro-Uruguayan history and culture also involves [84,85,148,206,234,
246, 259, 288]. Fortunately, the amount of Afro-Uruguayan studies has undergone
a steady increase in the last two decades, see for instance [13,18,22,55–60,69,116,
127,128,185,211,212,222,223,227–229,242,256,260]. This is partly in response to
debates and discussions promoted by Afro-Uruguayan activists and intellectuals
[109, 211, 212, 256], and partly as a result of the increasing interest in Afro-Latin

1 The idea of race, in its modern meaning in the Occident, was mainly developed by
Western Europeans following their global expansion, as a way of granting legitimacy to
slavery and social domination. To most contemporary scientists, the concept of race as
a biological human category is baseless [243]. However, it has proven to be one of the
most effective and long-lasting instruments of universal social domination, giving rise to
racism [115], and with profound effects on social relations and cultural features up to
present times [265]. The relationship between race and ethnicity can be misleading, and
often both categories are used interchangeably, though probably with different connota-
tions. In fact, three different kinds of social groups can be identify as potential victims of
discrimination an prejudice based on race [264]. Firstly, those individuals that combine a
phenotype sign as a racial marker with a distinctive cultural heritage, which constitutes
an ethnic-racial social group. This is, for instance, the case of Afro-Uruguayans involved
in candombe practices. Then, there can be also race without ethnicity, such as in people
with a phenotype associated to race but without carrying a differentiated cultural legacy.
Finally, ethnicity without race, that is people without distinctive phenotypes, but still
practitioners of some idiosyncratic cultural tradition.

2The idea of national rhythm, proposed by John Chasteen [71], has gained increasing
importance in Latin American cultural studies in recent years. It denotes forms of popular
dance and music, arising from the mixtures of African and European traditions. Such
rhythms (Argentinean and Uruguayan tango, Brazilian samba, Colombian cumbia, Cuban
rumba and son, Dominican merengue and bachata, and Puerto Rican bomb, plena and
salsa) have been gradually assumed as a symbol of national identity [17].
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American studies worldwide [16,18,185]. Not surprisingly, the vast majority of all
this literature has been written and published in Spanish.3

The aim of this chapter is to give an account of the main historical and cultural
aspects of the practice of candombe, including a description of the most relevant
musical traits of its rhythm and the way it is performed. Next section offers a
historical perspective that hopefully contributes to understanding contemporary
candombe tradition in the light of its earliest phases and subsequent evolution.
Then, Section 2.3 deals with candombe drumming, describing the drums and its
rhythmic and metric structure. It also gives a brief overview of the main influences
of candombe drumming into popular music.

2.2 Historical perspective
A long historical process lead to model this cultural expression as it is known
nowadays [18], since candombe drums have been played for almost two centuries
in Montevideo. Firstly, from the end of 18th century up to the abolition of slav-
ery in the second half of the 19th century, intercultural transformation processes
took place among different African cultures (mainly West African Mahi and Nago,
Congo-Angolan and Mozambican) [110]. In the remainder of the 19th century the
African-based cultural practices were re-elaborated. This was mainly determined
by the modernization processes imposed by the white elites since the constitu-
tion of Uruguay as a nation, and by the steady raise of the number of European
immigrants, primarily from Italy and Spain. During the 20th century, Carnival
associations were created within neighbourhoods of African descent families (also
integrating European immigrants), the parades were turned into core symbols of
cultural identity promoted by the national and municipal authorities, and some
artists linked to candombe reached massive success.

The socio-economic characteristics of the process of colonization and later
development of the country made that the contribution of Afro-descendants to
the national culture exhibits more visibility and definition in the urban environ-
ment [60, 116]. Although this region did not give rise to a plantation society as
in most areas of the Americas, during the late 18th century, a large black ur-
ban community and the typical social life of other slave trading ports developed
in Montevideo4 [58]. Today, the proportion of the population that acknowledges

3Among the few exceptions accessible to English-language readers are: the chapter
by Tomás Olivera Chirimini [222], which gives a brief historic overview of the cultural
practices of communities of Black African descent in Uruguay, the book by George Reid
Andrews [18], which offers a comprehensive history of Afro-Uruguayans from the colonial
period to the present, the book by Alex Borucki [58], which studies the lives of Africans
and their descendants in Montevideo (and Buenos Aires) from the late colonial period to
the first decades of independence, and the paper by Luis Ferreira [110], which deals with
candombe drumming, focusing on the body movements that generate sound and music.

4Slaves were the major part of the labour force of the rural and urban economy of the
territory. Their work was used in almost all the activities, from the colonial time, during
the revolutionary period and after the establishment of the nation state. They were
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African ancestry in Uruguay is about 9%, being the largest ethnic minority [65].
Although the highest proportion of Afro-descendants is found in the northern bor-
der departments of Rivera and Artigas (about 17%, probably due to the influence
of Brazil, the northern neighbour country) [65], these zones are sparsely populated
and most Afro-Uruguayans live either in Montevideo or the adjacent suburban
department of Canelones [18, 65]. Besides, candombe has been mainly associated
with the capital city, despite its dissemination to other cities in recent years [237].
By 1965, Lauro Ayestarán restricted its existence only to Montevideo, acknowl-
edging some lost traditions in other cities of the country in the past [30,31]. Thus,
Montevideo is the main focus of this chapter.

2.2.1 Africans in Montevideo: slave trade and African origins
The early records of the presence of enslaved Africans in the Banda Oriental—
the territory of what is today Uruguay—date back to the beginning of the 17th
century [60,222]. Its first city, Colonia del Sacramento, was founded by Portuguese
military forces in 1680. From its port, goods and slaves were smuggled to the other
shore of the Ŕıo de la Plata, into Buenos Aires—the principal city of the region,
established in 1580 under the Spanish colonial rule [57]. The city of Montevideo
was founded between 1724 and 1730, as part of Spain’s effort to prevent Portuguese
incursions into the Ŕıo de la Plata [18, 222]. Some years later, the authorities of
the city ask permission for the introduction of enslaved Africans to serve as labour
force, and since 1743 the trade of slaves to Montevideo began to run on a regular
basis [60]. From 1776 to 1814, Spain organized this part of its empire in the
Viceroyalty of the Ŕıo de la Plata, which roughly included the modern territories
of Argentina, Bolivia, Paraguay and Uruguay—with Buenos Aires as the capital.

During the second half of the 18th century, Montevideo turned out to be the
port of entry for ships sailing to and from Buenos Aires and the base of the Spanish
navy in the South Atlantic [57]. In 1791, the Spanish Crown declared Montevideo
the only authorized entry for slaves to the Ŕıo de la Plata, Chile and Perú [57].
The slave trade thus became one of the most important economic activities of
the city, including the earnings due to commercial taxes [60]. Merchants of Mon-
tevideo developed busy networks with Luso-Brazilians and Portuguese, the most
experienced slave traders of the South Atlantic [57]. The trade of cattle hides—the
main product of the region—with Brazil was authorized, and upon their return
the ships could bring slaves. In this way, Brazil became the main supplier of slaves
to the port of Montevideo [60]. The slave trade to the Ŕıo de la Plata was then
built upon complex trans-imperial networks of commerce and smuggling involving
primarily the cities of Buenos Aires, Montevideo, Rio de Janeiro and Salvador [57].

At least 70,000 enslaved Africans arrived in the Ŕıo de la Plata between 1777
and 1812, following straight trade routes from Africa and also indirectly through
Brazilian ports [57], see Fig. 2.2. This constitutes the most important demographic

employed in all sort of roles of Montevideo’s economy, such as street vendors, laundresses,
seamstresses, stevedores in the city port, domestic servants for well-off families, and also
practised several professions, like shoemaking, carpentry, masonry and blacksmithing [116].
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Figure 2.2: Slave trade routes from South America and Africa arriving at the Ŕıo de la Plata.

event since the Iberian colonization to this region, given that Buenos Aires had
only 43,000 inhabitants by 1810 and Montevideo no more than 12,000 by 1803
[57]. During the first decades of the 19th century, about thirty percent of the
population of Montevideo was enslaved [57,116]. In spite of the several difficulties
for determining the exact origin of the enslaved Africans in the Americas—for
instance, the pervasive smuggling, errors and omissions of trade records, departure
ports receiving people from different ethnic groups—there is a broad agreement
on the large diversity of the people arriving to the Ŕıo de la Plata, coming from
many different regions, and that predominantly belong to the vast Bantu cultural
area [57,106,116,222,260].

While all broad areas supplying slaves to the Americas took part in the di-
rect traffic to the Ŕıo de la Plata, three regions provided the large majority
(probably about 85%), namely South-East Africa (Mozambique), West-Central
Africa (Loango and Angola), and the Bight of Biafra (also known as the Bight
of Bonny) [57]. The remainder portion of the direct trade to the Ŕıo de la Plata
(about 15%) embarked from the Bight of Benin, Upper Guinea and Gold Coast [57].

But the slave trade from Brazil to the Ŕıo de la Plata was actually larger than
the direct trade from Africa (60% between 1777 and 1812), with more than half
of the people embarking in Rio de Janeiro and almost thirty percent in Salvador
[57]. Nearly all slaves coming from Rio de Janeiro were most likely from Angola
originally—embarking in West-Central Africa mainly from only two ports: Luanda
and Benguela—while a minority, particularly those coming from Salvador, may
have initially embarked in the Bight of Benin [57]. In this way, more people from
West-Central Africa and the Bight of Benin arrived to the Ŕıo de la Plata coming
from Rio de Janeiro than directly from Africa [57].

Several of these origins are reflected into the names of the African-based asso-
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ciations that existed during the late colonial period and throughout most of the
19th century in Montevideo (and Buenos Aires), which functioned as mutual aid
societies and organized social activities that helped to preserve part of their tra-
ditions. Their names referred to ethnic groups (e.g. Mandinga, Mahi), points of
embarkation in Africa (e.g. Mina, Benguela), and large geographical areas (e.g.
Angola, Congo and Mozambique) [57,222].

2.2.2 African-based associations: naciones and cofrad́ıas
The uprooting and forced cultural assimilation experienced by Africans and their
descendants, prompted processes of syncretism, recreation and resistance, which
responded to the need to establish themselves as a social group [60]. In cities
all over the Americas, enslaved Africans and free blacks5 formed different kinds
of associations, that contributed to define their sense of belonging and identity.
From the late 18th century until the end of 19th century, lay brotherhoods called
cofrad́ıas and African-based fellowships called salas de nación, were the most im-
portant of these associations in Montevideo [58, 126]. Although they were forms
of social control somehow—as they were strictly supervised, or even promoted, by
colonial and later national authorities—, they allowed Africans and their descen-
dants to meet and recreate part of their cultural practices.

As in the rest of the Spanish colonies, an evangelizing effort of the Catholic
church—intimately associated with the colonial power—was to organize Africans
into lay brotherhoods. In Montevideo, there were at least two important cofrad́ıas
devoted to black saints; one worshipped Saint Benedict of Palermo, and the other
Saint Balthazar.6 Founded in 1773 and 1787, respectively, the former functioned
until approximately 1892 [126]. It has been suggested that the actual meanings
attributed by Africans in the Americas to the representations of the saints were
related to their own spiritual traditions, instead of those intended by the Catholic
church [222]. Thus, in the context of Christian rituals, such as saints’ feast days or
the Corpus Christi, they were able to express some of their own religious and festive
behaviours in public processions with music and dance of African origin [222].

However, from a cultural production and reproduction perspective, the most
important associations were the salas de nación: mutual aid societies based on
African ethnic identities7 [60]. The records and chronicles document the existence
of African-based nations since the late 18th century in the Ŕıo de la Plata [58],
coming to about twenty simultaneously functioning in Montevideo from early to
mid 19th century [60, 126, 130, 212]. Apart from providing social networks and
support to make life endurable, they fulfilled a religious function. The passage
from life to death was of central importance, so people from all nations used to

5Sometimes slaves worked for other people receiving a pay. The money obtained was
mostly for the master, except for that generated on Sundays and holidays, which could be
retained by the slaves and saved in order to buy their freedom or that of their family. In
other cases the manumission could be obtained from the master as a grace [116].

6A women’s cofrad́ıa devoted to Our Lady of the Rosary is also documented [127].
7Resignified by both continuities and ruptures in social networks and experiences [58].
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attend wakes and funerals of their members. Actually, African meetings in the
Ŕıo de la Plata were firstly denominated tambos, after a funeral ritual from Por-
tuguese Angola [58]. Dance and music played a prominent role in these rituals,
and constituted the means to preserve some of their traditions, such as the use of
native languages in songs [106]. They also held weekly meetings—on Sundays—
for drumming and dancing [89], as well as on religious and public holidays [18].
Although the actual religious meaning of some of these rituals is missing from sur-
viving sources [58], they were powerfully spiritual events, deeply rooted in African
religious observances and beliefs [18,106].

The different ceremonies took place either indoors, in closed spaces called salas,
or outdoors, in open areas called sitios and along the streets in the form of pro-
cessions [106]. Firstly, salas were located within the walled city toward the south,
and sitios were vacant areas to the southern coast of the city in the Cubo del Sur
and in the Market square in the centre of town [222]. But during the second half
of the 19th century, African-based associations and celebrations were displaced
by the authorities to the south of the new city and the Cordón district [58, 126].
Large part of the African and Afro-descendant population was settled there, and
the southern coast developed what currently constitute the historic black neigh-
bourhoods of Montevideo: Barrio Sur and Palermo [58], see Fig. 2.4.

In the late colonial Ŕıo de la Plata, the African-based celebrations, involving
dancing, singing and drumming, were known generically as tangos and tambos—as
previously noted [18,28,127]. The terms were used to designate both the meeting
places and their music and dancing. But a new name for these meetings, namely
candombe, became widespread in press and official records in Montevideo in the
1830s,8 and it can be assumed that was in oral circulation since approximately
a decade before [58]. In fact, the term candombe was previously in use in Rio
de Janeiro (not to be confused with candomblé), appearing prominently in police
records of early to mid 19th century, to designate meetings with African dance
and music—and used interchangeably with the term batuque9 [58]. Just before
the appearance of the word in written records in Montevideo, the city was under
Luso-Brazilian occupation (1817-1829), thus connected to Rio de Janeiro probably
as never before [58]. This fact fuels the hypothesis that Rio de Janeiro could
have functioned as the centre from which West Central African-based rituals were
modified before turning to other regions, such as the Ŕıo de la Plata and Minas
Gerais10 [58].

8The term candombe first appeared in writing in 1829, in a judicial case concerning the
killing of a soldier who had been watching a “candombe de los negros” during Carnival, in
the south of Montevideo [58]. Later it appeared in a local newspaper, in 1834 denoting the
dances held by the nations in Saturdays and holidays, and in 1835 in the verses of a song
in the bozal dialect commemorating the 10th anniversary of the freedom of wombs law,
written by white poet Francisco Acuña de Figueroa [18]. Police records also show use of
the term, for instance, in two attempts to regulate the nations’ meetings in 1839 [28,126].

9The term batuque was also in use in Montevideo and refers to a wedding dance in
Angola, also emphasizing the West Central African predominance of ritual origins [58].

10A tradition called candombe also developed in late colonial Minas Gerais and it is
still practised today. It was a secret society within the Catholic black brotherhood of Our
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Regarding the origins of the word candombe, some bibliography sources point
to the Central Africa Kimbundu word ndombe, the ethnonym denominating the
Ndombe people, the largest group that lived along the Atlantic coast near Benguela,
when the city was founded by the Portuguese. Together with the qualifier ka,
meaning ‘pertaining to’ or ‘the location of’ as a place, they formed the word
candombe, which could probably indicate things having to do with Ndombe peo-
ple [58,212,222].11

Due to the cultural diversity of the African nations, there were in fact a lot
of different practices, for instance, different dances (e.g. calenda, bámbula and
chica), songs, rhythms and musical instruments (e.g. mazacalla, marimba, tacuara,
porongo and drums) [28, 126, 127, 222]. Apart from the Sunday meetings, the
nations organized processions in which they visited each other on the occasion
of mourning or feast day. The most important candombes took place during the
Candombe de Reyes (Candombe of the Kings), which was a very common festivity
all throughout the Americas [126]. It was the annual celebration of the coronation
of the Kings and Queens of the Congo and Angola, beginning on Christmas Days
and culminating on the Day of the Kings, January 6, which for some Afro-South
American communities was the feast day of Saint Balthazar [222]. The salas de
nación were internally organized in the manner of a monarchy, and the presiding
king and queen were selected in this occasion from among the most respected
elders of the community [222]. The festivity included a mass at Montevideo’s
cathedral, followed by a parade to the southern part of the city, which ended
in an outdoor dance [126], see Fig. 2.3. The monarchs headed the procession,
which was leaded by the master of ceremonies, namely the bastonero, followed by
a cortège of men and women dressed as elegantly as possible, after whom came
the musicians playing drums and other instruments. Members of the black militias
were solemnly in their military uniforms, and some officers were also kings of the
African nations [58]. Although the city council banned the dances within and
outside the walls on various occasions, they were one of the most important public
events of Montevideo, extensively mentioned in the local press. By the 1850s and
1860s, the Day of the Kings was attended by thousands of people, about 10 percent
of the city population, including many white people [18,58].

Conversely, the references to the rituals held indoors are scarce, and some
nations often adopted the form of initiatic secret societies [106,222]. State author-
ities were frequently uneasy about these gatherings, their repression and control
obviously contributing to the obscurity and secrecy. Certainly, one of the main
purposes of the salas de nación was to defend the rights and interest of their com-
munity. For instance, they helped to obtain the manumission of their kings or
members that were to be sold by their masters [60]. They also provided some kind

Lady of the Rosary, whose members were devotees of the three drums of candombe [165].
However, it exhibits no other apparent connections to current practices in Montevideo [58].

11However, it has been also argued that the words ka and ndombe actually come from
two different languages [58]. Another option is provided in [165], concerning candombe
in Minas Gerais, where the Bantu origins of the word are drawn from linguistic studies,
meaning ‘to pray’ or ‘to ask the intercession of’.
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of political representation and lobbying organizations [18]. In their processions on
major religious and civil holidays, the monarchs of the nations would pay a visit to
the authorities to convey their greetings, assuming positions of dignity and influ-
ence denied to them in daily life, while asserting their collective presence and their
Africanity through music and dance [18]. Their acts of resistance were usually in
peace, but also led to some revolts, such as the attempt to establish a maroon
community in 1803 and the free blacks and slaves conspiracy in 1833 [58,129,222].

With the death of the last people brought from Africa—many of them in the
struggles of the 19th century—and with the process of secularization and posi-
tivism promoted following the creation of the nation state [33], the salas de nación
gradually disappeared towards the end of the 19th century—the last references to
them in press occurring during the 1880s [126]. However, some of its practices
may have remained in the private sphere and some of its elements survived in new
cultural expressions, namely sociedades, comparsas and conventillos [18,106,127].

Figure 2.3: Candombe, painting by Pedro Figari (1861–1938), oil on cardboard, 1932. It
belongs to a series in which the author portrayed the festivities as he witnessed as a child.

2.2.3 Uruguay as a nation: sociedades, comparsas, conventillos
In Uruguay, as happened in most of Spanish America, warfare and the foundation
of the republic roughly coincide with the end of the slave trade12 and the abolition
of slavery [58]. One of the principal points of leverage was the need for soldiers
to battle the independence and civil wars [18].13 Yet, the abolition of slavery
was actually a long process that extends from the first laws of the independence
(1825) to the end of the Guerra Grande civil war (1839-1851) and beyond [116].14

12The last trans-atlantic slave trip direct from Angola arrived in Montevideo in 1835 [58].
13In the Ŕıo de la Plata, colonial black militias can be traced back to the end of the

18th century and were open only to free blacks. But when the revolution began in 1810 in
Buenos Aires, the recruitment of slaves by emancipation became prevalent. Freed blacks
joined forces on all sides of the armed conflicts, either willingly or being forced [58].

14In 1825 the freedom-of-wombs law was approved. In 1837 a law was passed on the
prohibition of the slave trade. During the Guerra Grande, both sides of the conflict pro-
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Figure 2.4: Montevideo city. The old walled city, the traditionally Afro-Uruguayan neighbour-
hoods, and the location of the three most significant conventillos are shown.

However, the ruling class was unwilling to lose slaves’ workforce, so the laws were
not fully applied and new ways of entering slaves were devised.15 Slavery-like
practices continued throughout the 19th century and still in the 20th century,
like granting of employment in exchange for housing, food and, in some cases,
education [56,59].

Men and women of African origin or ancestry had to insert themselves as
free people in society and to establish labour relations based on new rules. The
large numbers of European immigrants that the nation received between 1880 and
1930 also shaped social relations and job opportunities decisively.16 Thus, black
people took on less paid and informal jobs, or were directly out of the job mar-
ket [116, 127]. The processes of discipline imposition, which since the second half
of the 19th century fell on the working classes, particularly affected the black pop-
ulation, from institutions such as the army or school, or the regulations of labour

claimed abolition, the Colorados in 1842 and the Blancos in 1846, followed by compulsory
enrolment of all able-bodied man of African ancestry into the army. Children and women
remained under the authority of their former masters in “custody” or as “apprentice”. In
1853 the custody of the sons of the slaves emancipated by the abolitionist laws was ceased.
By marrying, women were freed from all legal links with their former masters [56,60].

15After abolition, Brazilian landowners that hold properties in Uruguay, managed to
introduce slaves into the country as indentured labourers (contratos de peonaje). In 1862,
new contracts of this kind were prohibited, but those signed before were still in force [18,60].

16In 1889, of the total 59,000 employees in the city, 43,000 were foreigners. [13]
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and entertainment [10,116]. At the same time, the thrust of modernism promoted
the adoption of cultural models prescribed by the hegemonic class and in some
cases the concealment of African origins [60]. But, the collective sense of Afro and
Afro-descendants continued to be preserved in several ways, especially through
social and civic organizations, called sociedades and clubs, and Carnival groups,
called comparsas. They also constructed their own political clubs and black news-
papers. In this process of identity formation, the traditionally Afro-Uruguayan
neighbourhoods in Montevideo, namely Barrio Sur, Palermo and Cordón, played
a prominent role; in particular, the tenement buildings called conventillos become
culturally very significant and grew into core symbols of candombe, see Fig. 2.4.

Black societies, clubs and comparsas

During the second half of the 19th century, social, cultural and civic organizations
proliferated in Montevideo, such as political clubs, artistic groups and mutual aid
societies defined by European ethnicity. However, Afro-Uruguayans were banned
from entering the society dances, social clubs, and other entertainment venues
reserved for the middle and upper classes of the city.17 Therefore, they created a
racially segregated counterpart of this movement and founded their own parallel
entities meant for the “coloured class” or the “coloured society” [18].

Towards the end of the 1860s, coexisting with cofrad́ıas and nations, part of the
Afro-descendant population began to organize societies and clubs. For instance,
the “Sociedad Pobres Negros Orientales” (Society of Poor Uruguayan Blacks) was
founded in 1869, with the goal to create a music academy and to take part in
Carnival, and the “Club Igualdad” (Club Equality) was created in 1872, with the
main objective of organising a library [127].18 The former also held monthly dances
for members only, and twice a year open for all. This was an important service of
these organizations to the Afro-Uruguayan community, because while the Africans
remained devoted to their candombes, the new generation was fond of ballroom
dances, and gave themselves up to the polka, the mazurka and the waltz [18].

To chronicle and promote all their activities, some of these organizations de-
veloped a fairly abundant press. Beginning with the foundation of the newspaper
“La Conservación” in 1872, the black press served as a tool for spreading their
political ideas and demands.19 The struggle for equality of rights and opportuni-

17There were no direct racial bans, as this would have violated the country’s guaran-
tees of civic equality. However, references to de facto access restrictions are abundant,
and become explicit in some cases, such as in a racial prohibition which appeared in an
advertisement of Carnival dances in 1882, that was finally overturned by protests [18].

18There are references to many other organizations, such as the “Raza Africana” and
“Negros Argentinos”, which also took part in Carnival, and social clubs like “Club Progreso
Social” and “Club Social 25 de Agosto” [127].

19Other Afro-Uruguayan newspapers from this period are: “El Progresista” (1873), “La
Regeneración” (1884-1885), “El Periódico” (1889), “La Propaganda” (1893-1894, 1911-
1912) and “La Verdad” (1911-1914) [127]. Between 1870 and 1950 Afro-Uruguayans pro-
duced at least twenty five newspapers aimed at black readers, the second-largest black press
in Latin America in absolute terms, after Brazil, and by far the largest per capita [18].
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ties and the unity of the black community are claims that appear recurrently in
the editorials of the Afro-Uruguayan press [127]. By 1870, an ideological stance
marked by positivism emerged from these editorials, that raised the rupture with
the past that linked them with slavery. In this context, cultural practices related
to the African were against the aspirations of “enlightenment” or “social progress”
that they held. Years later, towards 1885, when the nations and cofrad́ıas were in
their twilight, the editorials of the black press had an attitude of greater empathy
with the past of their elders, but at the same time pointed out the differences in
their life experiences as Afro-Uruguayans, for whom Africa as a homeland ceased
to make sense. There was a clear dilemma regarding the possible forms of inte-
gration of the Afro-descendants into society, also expressed in the mix of cultural
manifestations, which on the one hand reinterpret African legacy, and on the other
hand, appropriate and transform the music and dance that was imposed through
the European models of modernity [127].

To this respect, the charter of the “Sociedad Pobres Negros Orientales” is very
instructive [224]. It states that its main goal is to create a music academy, that
provides training in European musical instruments: piano, violin, flute and gui-
tar. However, it also indicates that: “tambourines, castanets, drums, cymbals,
triangles, and other African implements for the accompaniment of music are also
understood to be instruments” [18]. Although not instruction on them was of-
fered, it was assumed that the members would know how to play them and would
use them in their performances, from what it seems that they considered African
instruments and the music they made as a too rich cultural resource to be aban-
doned [18]. In addition, the charter stated that the sociedad would participate
in Carnival as a comparsa, which shows the link between both types of organi-
zations. This suggests they had a music repertoire in common, also shared with
the dances they organized. In this repertoire—apart from the schottische, the
polka, the mazurka and the waltz—they introduced a new form of music they
called tango, resulting from the combination of elements of African and European
origin [127].20 It is argued that these early tangos borrowed heavily from the
Cuban habanera,21 which spread throughout the Atlantic coast—as music, song
and dance—transmitted orally by trade between ports, and also through Spanish
theatre and zarzuela, ballroom dancing and even art music of the time [127].

Since the colonial times, Africans and their descendants have participated in
the popular festivities of the city with music and dance, Carnival being one of
those occasions [9].22 It was during Carnival that groups called comparsas pa-
raded through the streets, singing songs and playing jokes on the passers-by [18].
The drive toward modernity of that time had major impacts on Carnival prac-
tices. Between 1867 and 1872 the number of such groups more than quadrupled,
from 12 to 54, and their performance standards raised—improvised family com-
parsas left their place to groups governed by regulations, which included the role
of a director [9, 18]. The members of these groups were dressed up representing

20By the 1920s, the tangos of the 1860-70s were described as “Creolized candombe” [89].
21Another Creolized musical form that combined African and European elements [127].
22The first documented reference to their participation in Carnival is from 1832 [222].
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various carnivalesque identities, such as sailors, workers, laundresses, European
immigrants, etc., among which the comparsas de negros were one of the most pop-
ular. The “Raza Africana” (African Race) was the first of these black comparsas,
probably founded in 1867 [89], together with “Negros Argentinos” (Argentinian
Blacks) and the above-mentioned “Pobres Negros Orientales”, from the early pe-
riod [127]. Over time, a large number of such black groups appeared,23 becoming
the vast majority of the existing comparsas by 1890 [127]. They also performed in
dances and family houses, not only in Carnival but in other festivities [127].

Blackface comparsas

A different kind of comparsa burst into Carnival by 1876, the “Negros Lubolos”,
with the alleged goal to make known to the public the customs of the old negros
of the African nations [18]. Surprisingly, its members were not Afro-Uruguayans,
but young white man of middle- or upper-class background, that dyed themselves
perfectly black with burnt cork and soot. They dressed in costumes evocative of
those that were supposedly used by the members of the African nations and trained
themselves in the type of songs and dances that blacks did at their candombes [18].
Like Afro-Uruguayan comparsas, they also sang and danced tangos, with a com-
bination of European instruments and African drums [127]. Another blackface
comparsa, the “Negros Esclavos”, also appeared in scene in 1876, along with the
“Negros Lubolos”.24 The blackface comparsas became very popular among all
social classes and were featured at society balls [222]. Since then, negro lubolo be-
came the term used in Montevideo’s Carnival to designate a white man performing
in blackface.25

The songs portrayed the enslaved and free Africans speaking heavily accented
and grammatically incorrect Spanish, following the line of white poets and jour-
nalists of the time [18]. A nostalgic look back to Africa was one of the most re-
curring themes in their lyrics, as well as the yearning for white women’s love, who
were distant and untouchable for black men [18,127]. It is worth noting that Afro-
Uruguayan comparsas addressed their heritage in different ways, some also exploit-
ing the humorous representation of themselves, the comic effect of their amorous
longing for white women forbidden by racial barriers, and remarking the black
women’s sexual appeal, who were, on the contrary, readily accessible [18,127,222].

The blackface comparsa is another case of a well-known phenomena of appro-
priation and reformulation of black musical forms by the white people [18]; like
the blackface minstresly in the United States [195], or the blackface teatro bufo in

23Among them, “Nación Bayombe”, “Negros Lucambas”, “Nación Lucamba”, “Negros
Gramillas”, “Negros Agunga”, “Esclavos del Congo”, and “Congos Humildes” [127]

24There are some references to previous participation of the “Negros Esclavos” in Car-
nival, between 1868 and 1870. The first blackface comparsa in Montevido’s Carnival, “Los
Negros”, would have travelled from Buenos Aires to take part in it, from 1865 to 1867 [18].

25And it is remarkable to see in one of the songs by the “Negros Lubolos” from 1877,
what may be the first appearance in print of the onomatopoeic representation of the
candombe rhythm: borocotó, chas chas, that became widespread during the 20th century,
arguably mainly among white population [18,222].
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Cuba [178], during the same time. For the white society, blackface was simulta-
neously a way to embrace and distance itself from blackness, while enabling the
continued production and maintenance of racial difference and white supremacy.
This dialectical counterpoint, involving fascination with and attraction to black
culture, and at the same time marking the boundaries of class, race and gender,
was unmistakably present in the songs of negros lubolos [18]. The lyrics paid re-
spects to their white masters, ridiculed the pretentious black dandies aspiring to
a higher social status, and portrayed black men as outsiders, unsuitable partners
for romance or marriage [18]. Yet, they occasionally criticized racial inequality, for
they were on firmer ground in attacking the established order, being young white
men [18]. They also made use of the racial ventriloquism device [195], to dare to
comment on the strict gender conventions and the puritanism prevailing at the
time, which kept the middle- and upper-class young men and women apart at a
safe distance [18,33].

The appropriation and reformulation of the customs of the old negros was
carried out, in part, by the creation of the stock characters of the comparsa, that
still remain in the present-day Montevidean Carnival [18]. Two of these characters
originated in the 1870s within the blackface comparsas [18, 89]. One of them is a
reincarnation of the master of ceremonies of the African nations—the bastonero—
who was then called the escobero (broomsman), since he used a broom as a symbol
of command instead of his former baton (see Fig. 2.5). The other one is the
gramillero, supposedly representing the traditional herbal doctor of the African
nations, depicted as an elderly black man walking unsteadily on his cane, carrying
a bag of herbs [222]. Years later, by the early 1900s, a new stock character was
created, the mama vieja (old mother), an aged black women wearing a head cloth
and a long skirt with petticoat, who carries a fan or an umbrella and dances
with her partner, the gramillero (see Fig. 2.6). However, this new character was
introduced by a different type of comparsa that developed during the late 1800s
and into the 1900s, formed by working-class people, mainly European immigrants
and their descendants, but which also practised racial integration [18].

Figure 2.5: Two escoberos, members of a comparsa in the beginning of the 20th century.
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Proletarian comparsas and conventillos

In the 1860s and 1870s, when the black and blackface comparsas appeared, they
were racially segregated, despite they were all generically called sociedades/com-
parsas de negros. However, by the first decade of the 1900s (and perhaps ear-
lier) comparsas were no longer segregated, rather they included Afro- and Euro-
Uruguayans, and European immigrants, together in the same groups. The level of
ethnic integration varied largely across the different comparsas. For instance, the
comparsa “Esclavos de Nyanza”—the most important of those years, founded in
1900—was almost entirely white and its members were mostly Spanish and Italian
immigrants from the “La Facala” conventillo in the Palermo neighbourhood [18].

Large tenement houses, called conventillos, were erected in Montevideo since
the 1860s, either from the reformulation of pre-existing residences or the construc-
tion of new buildings, intended as an accessible housing solution for low-income
sectors of the society, namely rural population displaced to the city, European
immigrants and people of African descent [3]. Thus, each family would rent a
single room and share spaces such as bathrooms and kitchens. A large number
of these conventillos were located in Barrio Sur, Palermo, and Cordón, the neigh-
bourhoods that housed the greater part of the Afro-Uruguayan population at that
time—and the salas of the African nations, during the second half of the 19th cen-
tury.26 From the cultural point of view, the conventillos of these neighbourhoods
were always regarded as one of the most important social spaces in which people
of African descent renewed and recreated their traditions, reinforcing a cultural
identity that connected them with their origins [3, 9, 10, 13, 108]. Two important
examples are the conventillo “Risso” (1885-1978)—called Mediomundo—in the
Barrio Sur neighbourhood (see Fig. 2.7), and the conventillo “Barouquet” (1887-
1965)—also known as Gaboto—in the Cordón neighbourhood. Another relevant
case is that of the housing complex “Reus al Sur”—called Ansina— in the Palermo
neighbourhood, which was not originally a conventillo but over time ended up
functioning like one. See Fig. 2.4 for the location of these conventillos.27

It was in the conventillos that the immigrants came into direct contact with
Afro-Uruguayan dances and music, and ultimately learned and reworked them [18].
Striking as it may sound, for them, one way to become Uruguayan was to take
part in an African-based cultural form. As a consequence, a sort of working-class
negro lubolo arose, and a new proletarian comparsa emerged, which integrated
them together with the Afro-Uruguayans. Even in the majority-white comparsas
of the early 1900, like the above mentioned “Esclavos de Nyanza”,28 at least a few
black members were included, sometimes as directors of the group’s drummers [18].
Some groups were more or less equally divided between whites and blacks, such as
the “Congos Humildes” (1907) or the “Guerreros del Sur”, and others were racially

26By 1867 there were already 115 conventillos only in Barrio Sur [3].
27The conventillo Mediomundo was located in 1080 Cuareim street, so it was also called

Cuareim. The conventillo Gaboto was placed in 1665 Gaboto street. The Ansina housing
was framed by the streets Lorenzo Carnelli, San Salvador, Minas and Isla de Flores. [13]

28Other majority-white groups were, “Libertadores de África”, “Esclavos del Congo”,
“Esclavos de la Habana”, “Esclavos de Asia” and reborn “Pobres Negros Orientales” [18].
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mixed, but the existing records make it difficult to know in what proportions [18].29

The new proletarian comparsas adopted the existing stock characters of the
gramillero and escobero, worked the same lyrical themes—including the melan-
choly for homeland in Africa—, and exploited the musical form of candombe or
tango [18]. But they also innovated, not only by racial integration and the in-
troduction of the mama vieja, but through an increased emphasis on drums and
percussion instruments [18]. It was during the 1890s that the drum began to im-
pose itself as the basic element of the comparsa, and then became its main musical
instrument [224]. This clearly reversed the trend of the previous decades, which
attempted to “civilize” the rhythms of the African nations with European instru-
ments and melodies. According to the chronicles of the early 1900s, the drum
corps continuously beating while marching through the streets produced a huge
enthusiasm on neighbours and passers-by, and crowds followed the comparsa from
the sidewalks while cheering and trying to imitate the drummers and dancers [18].

In this way, the primary template for the comparsa that paraded in Montevideo
throughout the 1900s—and into the 21st century—was settled. The immense
popularity of these groups and the drums’ role in producing that popularity was
also established. Besides, groups of drummers and dancers become ubiquitous
in neighbourhoods such as Palermo and Barrio Sur, no longer confined to the
days of Carnival. Some comparsas turned into identity symbols of the different
neighbourhoods and developed very competitive, confronting each other when they
met while parading through the streets, with dancing duels by the escoberos [18].

Even though until recently—in the 1850s and 1860s—candombe drumming
was a heritage only circumscribed to the Africans and their descendants, it had
now been disseminated through the working-class neighbourhoods and had been
also adopted by European immigrants and Euro-Uruguayans. Arguably, in these
neighbourhoods, drums continued to play much of the same role they played in the
African nations, as a powerful tool for building community and social cohesion [18].

2.2.4 National rhythm: heritage and identity
During the first decades of the 20th century, the political and business elites be-
gan to devote efforts to turn Carnival into a commercial enterprise that would
attract tourists from abroad. This increased the emphasis on staged theatrical
performances and led to the emergence of new kinds of Carnival groups, such as
troupes and murgas.30 Everywhere in the city outdoor stages were erected—called
tablados—where comparsas and other Carnival groups performed before the entire
neighbourhood. Financially supported by the municipal authorities since 1923, its

29These include the “Pobres Negros Cubanos” (1890s), “Pobres Negros Hacheros”
(1896), “Hijos de la Habana” (1912), “Guerreros de las Selvas Africanas” (1915), and
“Libertadores de la Habana” (1915) [18].

30Developed during the 1910-20s, murgas are one of the main traditions of Montevidean
Carnival. Consisting of a male chorus of about a dozen people, accompanied by three
percussionists (bass drum, snare drum and a pair of crash cymbals), all make-up and
wearing grotesque costumes, they sing satirical songs about politics and society. [8]
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Figure 2.6: Traditional characters mama vieja and gramillero, members of comparsa “La
Roma”, parading in 2007 during the “Movida Joven” cultural festival (by Libertinus, on Flickr).

Figure 2.7: Conventillo Mediomundo. (Héctor Devia, from [13] reprinted with permission.)
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number grew up to about 150 by the 1930s [18]. In 1944 a large open-air theatre
called “Teatro de Verano” was inaugurated in the city, and since the following year,
it has hosted the official contest of Carnival groups organized by the municipal gov-
ernment [11]. The increased expectations for more polished performances and the
competition for municipal prizes influenced the profile of the comparsas [18].

Entering the Carnival contest in 1946, the group “Miscelánea Negra”, led by
two white entrepreneurs, introduced several innovations to the traditional com-
parsa, to the point that the judges did not allow them to participate in the category
of sociedades de negros. The novel music repertoire with more sophisticated musi-
cal arrangements, the showy costumes and the female dancers performing chore-
ographic routines, were so welcomed by the public that judges decide to reward
the comparsa with a special prize. Being then allowed to take part as a comparsa,
“Miscelánea Negra”, won the first prize the following two years. In this way, the
city government endorsed the importance of production values and entertaining
show, promoting a new model for comparsas. Following this new tendency, another
group by one of the same entrepreneurs, “Añoranzas Negras”, won the competi-
tion for the next five consecutive years (1949-53). Related to its success was the
introduction of a new stock character, the vedette, that, instead of being connected
to the Afro-Uruguayan past, was inspired from French cabaret.31 Martha Gularte
(real name Fermina Gularte Bautista), who featured as the vedette in “Añoranzas
Negras”, was a great hit in 1949 and 1950, and began a career that ultimately lead
her to become one of the greatest Carnival celebrities of all times [18]. Similarly,
Rosa Luna, born in the Mediomundo conventillo in 1939, followed Gularte in the
1960s as another widely acclaimed vedette [13]. Since then, until the 1980s, all of
the important vedettes were Afro-Uruguayan, as well as the overwhelming major-
ity of the women of the corps of dancers. The stereotypes of black female sexuality
and hot rhythm, both features supposedly carried in their blood, were reinforced
by the introduction of the vedette. Therefore, despite the fact that it has turned
into one of the most important characters of the comparsas, it is also controversial
and some Afro-Uruguayans dissociate it from candombe traditions. Certainly, the
supposed rhythmic and sexual ardency reflects a certain power associated with
blackness, but it is not the kind of power that can produce social and economic
progress and genuine racial equality, rather it can hinder upward mobility [18].

Despite Uruguay’s official doctrines of civic and social equality, discrimination
of the “coloured persons” was all too common during the first half of 20th century.
Reported mainly in the black press, it revealed the limits of Afro-Uruguayans in-
tegration into national life.32 In the face of such treatment the Afro-Uruguayans
continued to create their organizations, including Carnival comparsas, but also

31The first vedette was La Negra Johnson (real name Gloria Pérez Bravo), which actually
paraded the year before. The role is probably influenced by Josephine Baker, the Afro-
American performer that had been a sensation in Paris during the decades before. [18]

32Newspapers such as “La Vanguardia” (1928) and “Nuestra Raza” (1933) adopted a
posture of racial militancy and regularly reported all sorts of racism and discrimination.
But some notorious cases were dealt with by the press in general, like the controversy in
1956 surrounding Adelia Silva de Sosa, a young Afro-Uruguayan schoolteacher. [18]
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newspapers, social and political clubs. Among them, the “Partido Autóctono Ne-
gro” (PAN, 1936), one of the three black political parties created in Latin America
during the first half of the 1900s, and the “Asociación Cultural y Social Uruguay”
(ACSU, 1941), which is still in existence today, making it one of the longest-lasting
black social clubs anywhere in Latin America [18].33

It was ACSU that in 1955 devised a proposal submitted to the municipal
authorities for an Afro-Uruguayan cultural festival, to take place during the twelve
days of Christmas, between December 25 and January 6, commemorating the
annual celebrations held in the past by the African nations (the coronation of the
Kings and Queens of the Congo and Angola). The idea was welcomed by the
authorities but as an opportunity to focus attention on Carnival. So the proposal
was reconfigured into a special parade during Carnival, across Barrio Sur and
Palermo neighbourhoods, called “Desfile Oficial de Llamadas”, and devoted only
to comparsas, that compete for cash prizes. The first Llamadas were held in 1956,
and six groups took part, of which at least two were largely or entirely white.
The first place of the competition was shared by two relatively new comparsas,
“Fantaśıa Negra” (1954) and “Morenada” (1953), which though racially integrated,
were directed by Afro-Uruguayans [18].34

Drawing its members from the Ansina housing complex in Palermo neighbour-
hood, “Fantaśıa Negra” was directed by Julio Giménez and Pedro Ferreira (real
name Pedro Rafael Tabares, 1910–1980), who had worked together as directors of
“Libertadores de África” during the 1940s. Being a composer and bandleader, Pe-
dro Ferreira incorporated Afro-Cuban influences into candombe music—including
rhythms, melodies and instrumentation—that he had learned first-hand by playing
with Cuban rumba bands in Buenos Aires in the 1930s. Winning five first-place
titles in Llamadas, from 1956 to 1963, and also five consecutive first-place titles in
the Teatro de Verano (1954-58), “Fantaśıa Negra” become the dominant comparsa
in the 1950s, up to the point of being asked by municipal authorities to depart
from competition for several years to give others a chance [18].

On the other hand, “Morenada” was based in the Mediomundo conventillo in
the Barrio Sur neighbourhood. It was directed by the Silva brothers, Juan Ángel,
Raúl and Wellington, who after beginning their careers in “Añoranzas Negras”
during the 1940s, formed their own drum corps called “Lonjas del Cuareim” and
then founded a comparsa named “Morenada” in 1953 [13]. They won the first-
place title in Carnival four times between 1959 and 1969, and five more times in
the 1980s.35

The identification of the comparsa with the neighbourhood and the conventillo
was very strong, and continued to be so in the following decades—not only Ansina

33Other examples are “Comité Pro-Homenaje a Don Manuel Antonio Ledesma, Ansina
(1939), “Ćırculo de Intelectuales, Artistas, Periodistas y Escritores Negros” (1946), and
“Movimiento Juvenil Independiente Pro Unidad de la Raza Negra” (1948) [18]. At present
ACSU is known as “Asociación Cultural y Social Uruguay Negro” (ACSUN) [222].

34Recordings of the first Desfile de Llamadas in 1956 are available in CD [86], for three
of the six groups, namely “Guerreros Africanos”, “Morenada”, and “La Candombera”.

35While “Fantaśıa Negra” disbanded in the 1970s, “Morenada” was still active until the
early 2000s, when the last of its founders, Juan Ángel Silva, died in 2003.
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and Mediomundo, but also other in neighbourhoods such as the Gaboto conventillo
in Cordón, with the comparsas “La Llamada de Gaboto” and “La Llamada del
Cordón”. Despite the fact that comparsas remained very competitive, there was
also a lot of fraternity between them, which included the tradition of parading
in feast days from one conventillo to another, to greet the adversary by showing
off one’s prowess and celebrate together [13]. Actually, the practice dates back to
the times of the African nations, when its members would go drumming through
the streets calling others with their distinctive rhythms, to gather in their salas
or sitios and visit each other. The term llamada de tambores or simply llamada
(drum call), refers to this tradition, in which groups of drummers and dancers,
dressed in everyday clothes, parade along the neighbourhood in weekends and
feast days [222].

During the 1970s and 1980s, some comparsas continued in the direction of
increasing professionalism, innovation and spectacle. An Afro-Uruguayan dancer,
choreographer and dressmaker, José de Lima (real name Carlos Lasalvia), was a
key promoter of the kind of costumes and choreography he had witnessed in Rio
de Janeiro Carnival while living in Brazil in the 1960s. Beginning in 1970, he cre-
ated his own comparsas, “Serenata Africana” (1970–75, 1998–) and “Marabunta”
(1976–93), to put his vision into practice [18]. The proposal was undoubtedly
welcomed by the juries, considering the large number of first-place Carnival ti-
tles obtained by both comparsas in the 1970s and 1980s (five and seven, respec-
tively). Another white dancer and choreographer, Julio Sosa (stage name Kanela
or Canela), also followed this strand with his own comparsas, “Kanela y su Baraku-
tanga” (1977–2001) and “Tronar de tambores” (2002–).

At the same time, other processes that strongly impacted the candombe cul-
ture took place in the 1970s and 1980s. During the civic-military dictatorship
(1973–1985)—and also under the authoritarian governments of previous years—it
became forbidden to meet in groups and to discuss collective issues publicly. In
such circumstances, Carnival was subject to even closer regulation and control, and
the spontaneous llamadas—calling people to drum and dance into the streets—
acquired even more public significance [18]. Within a few years, the dictatorial
government decided to demolished several of the historic conventillos and hous-
ing projects that had given rise to the traditional and best-known comparsas. In
December 1978, the Mediomundo conventillo in Barrio Sur was evacuated.36 The
next month, in January 1979, residents of the Ansina housing project in Palermo
received orders to vacate and most inhabitants were dislodged within the follow-
ing few months. Finally, towards the beginning of 1981, Ansina was definitely
deserted [13]. Other conventillos befell the same fate and hundreds of people were
transferred to temporary accommodations, such as the sheds of an abandoned in-
dustry.37 The government justified these actions on the poor conditions of the
buildings and as a part of an urban renewal project. However, since the sites were

36In 2006, on the initiative of Edgardo Ortuño, one of the few Afro-Uruguayan parlia-
mentarians in Uruguay’s history, a law declared December 3 the annual National Day of
Candombe, in tribute to the farewell llamada held in Mediomundo on that date in 1978.

37The Gaboto conventillo in Cordón was demolished some years before, in 1965.
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not rebuilt and simply left as vacant lots, the desire to remove poor black and
white families from the city centre and disperse them to outlying neighbourhoods
was seen as the real motive. In addition, in later years black activists and or-
ganizations considered these forced evacuations as an assault to Afro-Uruguayan
culture, which destroyed the birthplaces of the traditional comparsas [18].

Certainly, that was a shattering experience for people made homeless by the
evacuations. And it was also difficult for the inhabitants that remained in the
neighbourhoods, who were left without their meeting places and even with no
partners to drum and dance [13]. However, it is also argued that if the govern-
ment’s goal was to undermine candombe it failed miserably [18]. The comparsas
based on the demolished conventillos gradually returned to their activities. For-
mer members of the Mediomundo continued to parade in “Morenada”, and almost
every year recalled their vanished home in their songs. Similarly, former members
of the Ansina housing project then created “Concierto Lubolo” (1987-1997), as the
lineal descendant of “Fantaśıa Negra”, devoted to preserve and honour the memo-
ries of their gone birthplace. Years later, in 1999, Waldemar “Cachila” Silva—son
of Juan Ángel Silva, founder of “Morenada”—created his own group and named it
“C1080” in homage to Mediomundo’s street address, Cuareim 1080. The follow-
ing descendant from Ansina was the comparsa “Sinfońıa de Ansina” (1994–2007,
2011–2014), directed by the Oviedo brothers, Gustavo and Edinson “Palo”, who
previously took part in “Concierto Lubolo”. In this way, the lineage of traditional
comparsas from these neighbourhoods continued to the present.38

During the 1990s and early 2000s there was a huge upsurge of candombe drum-
ming groups, even in neighbourhoods not traditionally associated with them. The
dispersion of the people from the conventillos throughout the city may have con-
tributed to the phenomena, as well as the adoption of candombe drums by some
highly popular artists in their recordings and performances.39 Actually, whites
were pouring in the comparsas in numbers never seen before, as if drums would
have become fashionable [18]. Whereas the annual official Llamadas during the
1960s and 1970s had typically included six to eight comparsas, with corps of about
20 drummers,40 by the end of the 1990s there were more than 30 groups perform-
ing, each of them formed by over one hundred drummers, dancers and performers.
During the 2000s the parade had to be divided into two days, and an admission
process was implemented to select only 40 groups, leaving many others out. The
number of drummers and total members was limited to 70 and 150, respectively.
The event has become massive, attended by tens of thousands of participants and
beholders, and broadcast live.

38The comparsa “C1080” is still active and won several first-place titles in Carnival and
Llamadas. An actual comparsa from the Ansina tradition is “Valores de Ansina” (2014–).

39In 1984, Jaime Roos recorded in studio two songs with candombe drums, namely “Tal
vez Cheché” and “Pirucho”, featuring Gustavo and Edinson Oviedo, Fernando ‘Hurón’
Silva and Fernando ‘Lobo’ Nuñez [12]. By the same year, Alfredo Zitarrosa recorded
“Candombe del olvido” in studio, and José Carbajal recorded “Ya comienza” live, both
using candombe drums [237]. The latter also features the Oviedo brothers and Silva.

40See for instance the CD [86], for the number of comparsas recorded in the Llamadas
in 1960, 1962 and 1964, and also the number of drummers reported in 1964 for each group.
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The spontaneous llamadas of “Candombe de Reyes”, held on January 6th in
Barrio Sur and Palermo—which follow a tradition since the colonial period—has
involved increasing amounts of participants and spectators in the last two decades,
assimilating more elements of spectacle and Carnival, to the detriment of the
less produced and informal groups of the neighbourhoods [126, 236]. In addition,
many more candombe drumming groups play informally in the neighbours all over
Montevideo. Since the 1990s, official parades organized by local authorities have
also emerged in other cities of the country, such as Durazno and Canelones, which
bring together thousands of people and dozens of comparsas [237,260].

The widespread growth of candombe brings about some positive aspects, such
as greater social and institutional legitimacy, but also raises some problematic is-
sues. From a musical perspective, master drummers always stress the fact that
candombe drumming is essentially a dialogue, with call and response interactions.41

But, they argue, most new drummers do not have enough candombe vocabulary
to listen to and understand these dialogues, let alone to take part in them. Be-
sides, the large number of members of the modern drum corps makes it difficult
to hear and respond to the conversations [18]. The traditional process of grad-
ually learning each drum at a time, to master one before attempting the other
(first chico, then piano and finally repique), has been subverted by an alleged
tendency to immediacy. At the same time, certain practices that require a hierar-
chical organization—such as the end of the llamada, in which all the drums stop
playing precisely at the same time, or the control of tempo variations—are more
troublesome to implement. In face of such difficulties, some master performers be-
gan offering workshops on candombe drumming—only learnt by imitation in the
past—, while others simply retired from Carnival.42 The performing styles were
also affected by the new situation. In the past, each neighbourhood had a distinc-
tive and recognizable style of performing the rhythm, the three most important
being Barrio Sur (Cuareim), Palermo (Ansina) and Cordón (Gaboto) [5].43 But
with the emergence of so many new groups, styles became increasingly diffuse and
the knowledge of their former differences is scarce, even among those who act as
juries in Carnival [88]. In addition, the spiritual aspects attributed to the llamada
de tambores [106,111], and even to the official Llamadas parade as a memorial rit-
ual [22], are unknown to the majority of those who recently approached candombe.

Another frequently mentioned issue of concern is that, despite the commercial
exploitation of Carnival and the Llamadas, which supposedly generates significant
revenues, it provides a modest living for a handful of stars, but it is particularly
unrewarding, in financial terms, for most of those who take part. The poverty in

41For the following assertions, see the interviews with Tomás Olivera Chirimini, Sergio
Ortuño, and the brothers Héctor Noé and Fernando Nuñez (son), published in DVD [88].

42In 1996, Sergio Ortuño with Miguel Garćıa founded a candombe school in Mundo Afro,
today lead by Álvaro Salas Gularte. Since 2006, Sergio Ortuño has carried out his own
school within the Triangulación-Kultural project. Master drummer Héctor Manuel Suárez
founded in 2002 a candombe school called Integración, which is still active.

43Recordings of Barrio Sur and Cordón styles in the 1960s are available in CD [86].
Modern examples of the three styles, both in small ensembles and comparsas, are available
in CD [210] and DVDs [87,88].
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which a comparsa director or a renowned master drummer lives—some of which not
even own their own drums—can be striking [18]. This is consistent with the broader
picture of ethnic-racial inequality in the country, since the poverty rates of the
Afro-Uruguayan population more than double those of the rest of the society [61,
65].44 According to recent studies, Afro-descendants present a clearly unfavourable
situation in all indicators related to educational and economic performance. They
have lower average income levels, reach lower levels of education, and generally
work in low-skilled and lower paying jobs. At the same time, they have little
participation in positions of direction, in the politics and in the academy [64,65].

The surveyed data on racial inequality, available since 1998, has supported the
demands of black activists and organizations, such as Mundo Afro,45 for govern-
ment efforts to assist black population. Only recently, based on two laws from
2006 and 2013, specific initiatives and affirmative actions are being gradually im-
plemented.46

In 2009, in a context of legitimation and appropriation by broad sectors of the
society, candombe was inscribed on the Representative List of the Intangible Cul-
tural Heritage of Humanity by UNESCO, being considered a symbol of the identity
of communities of African descent in Montevideo. This constitutes the greatest
institutional recognition that a cultural practice can obtain. As well, it entails
responsibilities for the political classes and the society at large, in particular on en-
suring its continuity. This implies maintaining its essential meanings and elements
of social cohesion, as well as guaranteeing the welfare of those who have developed
them. The academia is also urged to contribute to its preservation, through re-
search and outreach, and its participation in political decision-making [236]. From
the “Ministerio de Educación y Cultura” (MEC, Ministry of Education and Cul-
ture), some initiatives have been taken, such as the creation of the “Grupo Asesor
del Candombe” (Candombe Advisory Group) formed by referents from the Barrio
Sur, Palermo and Cordón, and the implementation of various actions for the elab-
oration of a preservation plan [237, 260]. Also within the MEC, the “Centro de
Documentación Musical, Lauro Ayestarán” (CDM) has organized several academic
and outreach events, and has edited valuable bibliographic and audiovisual mate-
rial, including both historical records and new productions [86–88,112,158,236].

What in the past was a cultural expression confined only to the descendants
of Africans, today is the heritage of all Uruguayans, and even of the whole human
race. Thus, the typifying and the descriptive use of the Afro prefix for candombe is
imprecise, as it contains both a false generalization and a false reduction [236]. In

44In 2006, 50 percent of the Afro-Uruguayans fell bellow the national poverty line, versus
24 percent of whites [61]. In 2012, the incidence of poverty among the Afro-descendants
was 27.2 percent, while in the total population it was 12.4 percent [65].

45Founded in 1998, by a group of former members of ACSU led by Romero Rodŕıguez
and Beatriz Ramı́rez, it has been by far the most visible of the Afro-Uruguayan social and
civic organizations during the 1990s and early 2000s. It gathers different subgroups with
specific interests and missions. [18,256] Other present organizations are Casa de la Cultura
Afrouruguaya, Coordinadora Nacional Afro, Mizangas and Triangulación Kultural.

46Law number 18.059, “Candombe, Cultura Afrouruguaya y Equidad Racial” (2006),
and law number 19.122, “Acciones Afirmativas para Afrodescendientes” (2013). [247]
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this regard, as remarked by Alfaro [13], on the one hand, one can note the racist
component that lies beneath the discourse that confines candombe only to blacks.
On the other hand, it can be condemned as being racist the supposed frivolity
with which some whites would claim candombe as their own. Both positions refer
to a key controversy, which has to do with the losses and gains that are part of
cultural change, which allows a tradition to stay alive and continue interacting with
people [13]. What seems to be crystal clear is that, for part of the black population
candombe is their most precious patrimony, and far from being a fashion, plays a
central role in their culture and their vision of the world [13]. Precisely in a part
of the world where blackness has more than often been historically and culturally
assumed to be “invisible”, as Andrews points out [17], the candombe drums project
in the modern urban space powerful sound memories of Uruguay’s past and its links
to Africa. Although controversial, complicated, problematic, and also biased as
can be such memories, they are much better than silence [17].

2.3 Candombe drumming
Although originated in Uruguay, the practice of candombe discloses its strong
African roots in its instruments’ topology, its rhythm, and its performance prac-
tices. The core element of this tradition is the candombe drumming, performed
by groups of drummers playing a distinctive rhythm while marching on the street.
This section is devoted to describing the candombe drums, the essential patterns of
the rhythm and its resulting metric structure. Finally, a brief account of the main
influences of candombe drumming into the popular music of Uruguay is given.

2.3.1 Candombe drums
The instrument used in candombe is simply called tambor,47 the generic Spanish
word for drum, of which there are three different sizes with their respective reg-
isters: chico, the smallest and high pitched, repique, of medium size and register,
and piano, the biggest and low pitched.48 An ensemble of drums is called cuerda,
which in its minimal form consists of one of each type, but can gather dozens of
drums. Fig. 2.8 shows, from left to right, a chico, a repique, and a piano.

The drumhead is hit with one hand bare and the other holding a stick, that is
also used to hit the wooden shell of the drum to produce a sound called madera.
The rhythm is played while marching, so the drum is carried hanging from the
performer’s shoulder by using a strap, called taĺı or taĺın [106]. An animal hide is
used for the drumhead—usually cow’s hide, and sometimes colt’s skin—, whereas

47The denomination tamboril was also widely used in the past and can still be found
in some cases. But currently the performers prefer the term tambor. Some scholars point
out that tamboril allows for certain specificity compared to the generic word tambor [5].

48The chico drum was also called pino by the early 1950s, and the terms congo, pelé or
belé were used in the past too. An old name for the piano drum was Gon or Ngongon [106].
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the bottom end is open.49 The thickness of the drumhead varies for the different
drums: thinner for chico and repique, and thicker for piano. Traditionally the skin
is nailed to the shell of the drum. Thus, the tuning of the drum is achieved by
heating the skin by means of a fire [106], usually prepared in the street next to the
kerbstone, as shown in Fig. 2.9. This process, which is called templado (literally
warm-up), constitutes one of the most characteristic rites of candombe drumming
and a privileged moment for social interaction. Most modern drums, however, use
a mechanic tuning system in order to tighten the drumhead (see Fig. 2.8). The
skin is mounted on a metal hoop, and by using a wrench, tension rods are screwed
into threaded lugs attached to the drum’s body. Yet, even drums with mechanic
tuning systems are often tempered to the fire as well (see Fig. 2.9). The tuning is
approximate, but has to provide the relative pitch between the three different type
of drums, such that each one lies in its corresponding frequency register [5, 106].

Figure 2.8: Candombe drums, from left to right: chico, repique and piano. (Mart́ın Rocamora)

In the past, the drums were built from barrels—mainly barrels of “yerba
mate”—the hogshead staves modified to build drums of different sizes [31]. By
the end of the 1960s, the barrels were no longer in use and become scarce, so
the drums began to be made from scratch. Different kinds of wood have been
used for that purpose, such as pine, oak and cedar—the former widely preferred
nowadays for being lighter. The changes in construction methods also impacted
the shape and dimensions of the drums. The drums in the past were straighter
than their modern version [5]. According to drum builder Juan Velorio (real name
Bienvenido Mart́ınez), by 1959 the size of the drums was increased.50 The height
of all of them is about 70 to 80 cm, but it is the diameter and the amount of
bent that varies for the different drum types. For instance, Juan Velorio gives the

49During the 1980–90s, plastic drumheads were also used, manufactured for other per-
cussion instruments or of disused radiographic film. Currently they are no longer in use.

50See the interview “Juan Velorio, ingeniero del tambor”, ca. 2000, TV Ciudad. He also
states that the size increase led to the disappearance of the bombo drum, which was a
piano-like drum but of a larger size. The shape and dimensions of a group of drums in
1965 is reported by Ayestarán in [31], also including a bombo, referred to as bajo.
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following values for the diameter of the drumhead: 10 and 11 inches for chico, 12,
13 and 14 inches for repique, and 15 inches and beyond for piano. Nonetheless,
other drum builders may have different criteria, for example, some advocate for a
smaller chico, of about 7 inches, which yields a higher pitch.51

Figure 2.9: Templado de tambores before the Desfile de Llamadas 2005, comparsa “C1080”.
Note that the piano drum in the middle has no mechanic tuning system. (Mart́ın Rocamora)

The construction of drums is done in an artisan way, as shown in Fig. 2.10,
with no manufacturers companies involved, and the trade is passed from masters
to apprentices, following a sort of lineage. For instance, Juan Velorio learned the
trade with ‘Quico’ Acosta, after working several years for him disarming barrels.52

Likewise, Fernando ‘Lobo’ Núñez, learned with ‘Cabeza’ Montrasi, who in turn
had learned with Juan Velorio. Currently, Nuñez passed the trade to his sons
Héctor Noé and Fernando Nuñez, while ‘Catito’ Mart́ınez, son of Juan Velorio, is
also building drums.53

2.3.2 Rhythmic patterns and metrical structure
The analysis of various corpora of African and Afro-diasporic music reveals a
musical organization generally composed of recurrent temporal patterns [4,15,20,
39,119,177,190,217]. This is also the case of candombe drumming, whose rhythm
results from the interaction of rhythmic patterns of the three different drums.

It is important to recall here that meter and rhythm are two different but
interrelated concepts [193]. The area of rhythm has deserved a lot of attention
in recent music theory, leading to the development of a new conception of meter
in the past few decades. One of the most important contributions to this new
view of meter was Lerdahl and Jackendoff’s Generative Theory of Tonal Music

51See the interview with Héctor Noé and Fernando Nuñez (son), published in DVD [88].
52By 1966, Ayestarán conducted two interviews with drum builders Eulogio ‘Gitano’

Celestino and Valent́ın ‘Gaucho’ Piñeyro, that provide valuable information on the con-
struction process. It seems that Piñeyro also learned the trade from ‘Quico’ Acosta [260].

53In the 1990s, candombe drums by the late Alfredo ‘Pocho’ Guillerón, began to be sold
in music stores. At present, Álvaro Rabasquiño is another accomplished drum builder.
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Figure 2.10: Fernando ‘Lobo’ Nuñez building drums in his workshop in Barrio Sur.

(GTTM) [181]. The metrical structure is regarded as a regular pattern of points
in time, called beats, hierarchically organized in levels. However, beats do not
necessarily correspond to the actual events present in the piece. Rather, the listener
must infer the metrical structure from the events of the piece. What is more, once
the meter is established, the events of the piece need not constantly reinforce it,
and may even conflict with it to some extent [193,281].

Conversely, the concept of rhythm involves patterns of organised durations
that are phenomenally present in the music [169, 193], i.e. they form the music
stimulus itself, also called ‘surface rhythm’ [142]. While meter is a mental construct
not directly heard but inferred from the rhythm, its organised pulsation provides
specific anchor points to structure the rhythm [75]. Hence, meter is also regarded
as a background to the rhythmic pattern, which is based on the Kolinski’s idea
of meter as a framework [169]. It has been noted that rhythms in African and
Afro-diasporic music often exhibit a significant portion of note onsets not directly
reinforcing the metrical structure, by allowing anti-phase (off-beat) and other more
complex types of non-congruent relationships between rhythm and meter [62,169,
190, 194, 217]. However, there is currently a strong agreement on that the metric
frameworks underlying these rhythms are usually the same found in Western music
[119, 190, 194, 281]. The most common meters involve a cycle of four even beats
that are subdivided into two, three, or four faster pulses [21,62,190,194,238].

In candombe drumming each drum has a distinctive rhythmic pattern, associ-
ated to its specific register, and corresponding to a different musical role. The chico
drum functions as a timekeeper, playing an ostinato in the high register, which
defines the lowest metrical level (sometimes called ‘density referent’ in African
musicology [217]). The repique plays in the mid register and acts as the variative
lead drum, whereas the piano drum plays in the low register an accompaniment
that allows for different variations and ornamentations. Besides, the rhythm has
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a timeline pattern,54 called madera (or in analogy to Afro–Cuban music, clave),
which is shared by the three drums and has many traits in common with similar
patterns found in Afro–American music, like the son clave. It is also worth not-
ing that the drummers move forward walking with short steps synchronized with
the beats or tactus, and the transference of the body weight from leg to leg while
marching constitutes a fundamental pattern, not audible but internally felt [110].

The rhythmic pattern of the chico drum is depicted in Fig. 2.11, where lower
and upper line represent hand and stick strokes respectively. Following a virtually
immutable pattern, the chico drum defines the tatum, i.e. the lowest level of pul-
sation over which the metric structure is built. This basic pulse is usually played
at a high rate, typically from 450 to 600 beats per minute (beats per minute, the
unit used to measure tempo (bpm)). The periodicity of order four of the pattern is
in the range of about 110 to 150 bpm and is perceived as the tactus. However, the
location of the beat within the pattern can be very difficult to perceive without
any further references, being the hand stroke—which is accented—the strongest
candidate [158].

chico

Figure 2.11: Rhythmic pattern of the chico drum. Lower and upper line represent hand and
stick strokes respectively, a convention that is used henceforth in all music notations.

The clave pattern is produced by hitting the shell of the drum with the stick,
and is played by all the drums as an introduction to and preparation of the llamada
rhythm; then it is also played by the repique drum in between phrases (see the
first repique on the left of Fig. 2.1). As in other Afro-Atlantic music traditions,
the clave serves as a mean of temporal organization and synchronization. Fig. 2.12
shows the kernel of the rhythmic structure of candombe: the superposition of the
chico pattern and the clave. The role of the clave is twofold: it establishes the
location of the beat with respect to the chico pattern, and also defines a cycle of
four beats (sixteen tatum pulses), thus inducing a higher metrical level [158].55

The way the madera pattern operates in the candombe rhythm, however, presents
interesting differences with the more common uses of timeline patterns in other
Afro-Atlantic music traditions. For instance, instead of a single timeline pattern

54The concept of ‘timeline’ is essential in understanding and analysing the rhythmic
organization of the music of Africa and the Afro–Atlantic diaspora. Arthur M. Jones was
the first to underline the importance of the bell pattern in the music of the Ewe people of
West Africa and its pervasiveness in sub–Saharan music [153, 154]. Years later, Kwabena
Nketia introduced the term timeline, now widely used to refer to a short rhythmic pattern
repeated cyclically in the manner of an ostinato [217]. This pattern serves as a reference
for temporal organization and as an identifier for each rhythm or “song”. Among several
others, terms like timeline, bell pattern, standard pattern, guideline or, in Latin America,
clave, have been used to refer to this key element of the rhythmic structure [160].

55The first beat of this rhythm cycle is called the downbeat in this dissertation.
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as in other Afro–Latin–American musics, the clave pattern in candombe allows for
several different types and variants [160].

chico

clave

Figure 2.12: Interaction of chico and clave patterns, and the three levels of the resulting metric
structure. There are actually several possible variations of the clave pattern shown here. For
example, the third and fourth strokes can be displaced, and/or additional strokes can be added.

Two characteristic traits link this rhythmic/metric configuration with other
Afro-Atlantic music traditions: 1) the pattern defining the pulse does not articulate
the tatum that falls on the beat, and has instead a strong accent on the second; 2)
the clave divides the 16-tatum cycle irregularly (3+3+4+2+4), with only two of its
five strokes coinciding with the beat. In this respect, the rhythmic/metric structure
of candombe differs from tonal metric structures found in Western music [181],
making it difficult to decode for listeners not familiar with it [219].

The repique and piano drums are both technically and rhythmically much
more complex than the chico drum, exhibiting also more variation in their playing.
Fig. 2.13 shows their respective patterns simplified to their essentials, along with
the metric structure and the previously introduced chico and clave patterns. The
repique has the greatest degree of freedom among the three drums: by exploiting
a wide repertoire of complex variations in its rhythmic patterns, it is the main
responsible for generating interest, surprise and musical variety in candombe. It
has, however, a primary pattern, shown here in its basic form [157,158].

repique

clave

chico

piano

Figure 2.13: Interaction of the main candombe patterns and the resulting metric structure.
The patterns of the repique and piano drums are shown in a simplified basic form.

With respect to the piano drum, it can be seen that, reduced to its rhythmic
skeleton, its pattern is congruent with the clave, thus reinforcing the four-beat
cycle defined by the latter [158].56 Therefore, its musical role can be assimilated

56It has been note the similarity of the essentials of the piano drum pattern to the
habanera pattern [111,127]. Actually, various rhythmic structures are shared among closely
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to a timeline pattern. Yet, the piano drum actually has two functions: playing
the base rhythm (piano base), and occasional more complex figurations (piano
repicado). These can be either ornamented variations of the base pattern, or
figurations derived from the primary pattern of the repique drum (hence the name).
Some notable piano players developed distinctive rhythmic patterns and personal
performing styles that influenced other players. Besides, it is in the patterns of the
piano drum that the differences among the styles of the different neighbourhoods
(barrios) are more evident.

The three more important traditional styles, from which all others derived, are
Barrio Sur (Cuareim), Palermo (Ansina) and Cordón (Gaboto) [5]. Indeed, the
two more different styles are Barrio Sur and Palermo [106], while Cordón style
is often regarded as a variant of Palermo. A piano performance in the Barrio
Sur style typically includes less repicado patterns, so that the base patterns—
often embellished—prevail, whereas the Palermo style is characterised by frequent
repicado patterns that produce call-and-response interactions between piano and
repique drums. In addition to the distinction of the piano drums, other often
mentioned stylistic difference concerns the tempo of the performances. The Barrio
Sur style usually begins the rhythm slowly, and despite the fact that tempo can
be increased throughout the performance, low tempos are typically maintained for
long periods. On the other hand, the Palermo style tends to be faster, and even
though it can also exhibit tempo variations, there is usually an intention of tempo
increase but only up to a certain value in order to keep the rhythm comfortable
for playing and dancing. In the style of Cordón the rhythm is played at an even
higher tempo.57

2.3.3 Candombe drumming and popular music
In addition to its early links to tango by the late 1800s [127], candombe drumming
has influenced several kinds of popular music in Uruguay throughout the 20th
century [5,221,235]. During the first decades of the 1900s it was mainly restricted
to the comparsas in Carnival, and to the spontaneous llamadas through the historic
black neighbourhoods of Montevideo in feast days or public holidays. The drums
were also used in private family gatherings of the Afro-Uruguayans, during which
not only candombe was played, but also other rhythms such as the habanera, the so-
called milongón (a slow-tempo candombe) and some ternary rhythms (6/8, 12/8)
generically called afros.58 In fact, all these rhythms were part of the repertoire of

related musical forms such as tango, candombe, milonga and habanera [127]. For instance,
the habanera pattern and its variants usually appear in the low frequency register of these
music styles, whereas the group of ‘headless’ sixteenth notes characteristic of the chico
drum, and the sixteenth–eighth–sixteenth note motif of the repique primary pattern (as
well as the eighth-note triplet) are found in the mid and high frequencies [127].

57For style comparisons, see the interviews with Tomás Olivera Chirimini, Sergio Ortuño,
Wellington Suárez, and the brothers Héctor Noé and Fernando Nuñez (son), published in
DVD [88]. Recordings of the three styles are available in CD [210] and DVDs [87,88].

58The first description of this practice is due to Ayestarán by 1967, who named it
“conversación de tambores” (drums conversation) [29]. He noted that the performers
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a comparsa’s stage performance, and are used at present in the same context.

Since the mid 1930s, the orchestras of tango rioplatense introduced candombe
influences, labelled by different names, such as tango candombe or milonga tango
[237]. Among the pioneering composers were Alberto Mastra (real name Alberto
Mastrascusa, 1909–1976) and Horacio “Pint́ın” Castellanos (1905–1983) [221]. The
noted Afro-Uruguayan candombe singer Lágrima Ŕıos (real name Lida Melba Be-
nav́ıdez, 1924–2006), also stood out in this genre. The movement was consolidated
by the 1940s, with some recordings including candombe drums, but would be ex-
tinguished a few years later, before the 1960s [237].

A different musical strand was developed since the mid 1950s by the renowned
Afro-Uruguayan musician Pedro Ferreira (real name Pedro Rafael Tabares, 1910–
1980). By the time he was director of comparsa “Fantaśıa Negra”, he created
an orchestra named “Cubanacán”, that introduced Afro-Cuban influences into
candombe music, mainly from the successful “Lecuona Cuban Boys” orchestra.
This music become a stylistic reference for comparsas and other candombe groups
since then, and some of his compositions turned iconic [237].

By 1964, singer and producer George Roos (1925–1995), promoted the fusion
of candombe and jazz, a project known as “candombe de vanguardia” (avant-garde
candombe), with the idea of exploiting it as a dance form for large audiences [221].
Three different groups were created, drawing some of its members from a jazz club
in Montevideo, and a record was produced for each of them.59 Despite the lack of
commercial impact and the very few shows they had, some of their songs become
candombe ‘standards’ and inspired the following generations of musicians [83].

Also by the mid 1960s, a movement of folkloristic popular song—known as
canto popular—was developed, in opposition to the authoritarianism of the govern-
ment and the subsequent dictatorship, reaching very large audiences [237]. Some
of these artists included candombe influences in their music, such as Alfredo Zi-
tarrosa (1936–1989), José Carbajal (1943–2010) and the duet “Los Olimareños”,
formed by Braulio López (1942–) and José Luis “Pepe” Guerra (1943–).

In the late 1960s, influenced by rock—particularly The Beatles—a younger
generation of musicians created a movement of popular music known as candombe
beat. The first group of this kind was “El Kinto” [83], founded in 1967 and active
until the mid 1970s, which was lead by two very influential musicians, namely
Eduardo Mateo (1940–1990) and Rubén Rada (1943–). In 1968, an album was
edited by the rock group “Los Shakers”, lead by brothers Hugo Fattoruso (1943–)
and Osvaldo Fattoruso (1948–2012), including the song “Candombe”, the first one
to be released in this style [83]. By the early 1970s Rada lead the group “Totem”,
and years later, after following his solo career, he would become the most renowned

were sitting, holding the drums between their legs and playing with two bare hands. The
performances are described as highly improvised and refined, involving several rhythms.

59The directors of the groups were Manuel “Manolo” Guardia (1938–2013), Hebert
Escayola (1928–), and Daniel “Bachicha” Lencina (1938–2017), while the singers were the
talented Afro-Uruguayans Cachito Bembé (real name Fermı́n Adolfo Ramos) and Hugo
“Cheché” Santos (1941–), both with fruitful careers in Carnival groups. The recordings
featured candombe drums along with different jazz ensembles.
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artist of the Afro-Uruguayan music, and one of the most important in Uruguay,
reaching massive success [245], see Fig. 2.14.

By the mid 1980s, a process of greater promotion of candombe takes place,
in the context of its revaluation as an element of identity within the popular
music movement [237]. A sign of that is the adoption of candombe drums by very
popular artists like Jaime Roos (1953–), Alfredo Zitarrosa, and José Carbajal, in
their live performances and recordings [12, 237]. Previously, the influential group
“Opa”, led by the Fattoruso brothers, had included a cuerda de tambores in their
concert in 1981. Actually, it seems that it was the Afro-Uruguayan musician
Jorginho Gularte (1956–2013, son of Martha Gularte) who, being invited to take
part in that show, proposed the inclusion of candombe drums [237]. Then, since
the 1990s, musicians from the popular music movement have been participating
in comparsas during Carnival, as is the case of the comparsa “Sarabanda” in
1992 [237]. Currently there are groups exclusively devoted to candombe music,
such as “Conjunto Bantú” (1971), “La Calenda Beat” (1982), and “Rey Tambor”
(2007), or artists primarily linked to it, like the Afro-Uruguayans Eduardo Da
Luz (1954–) and Isabel “Chabela” Ramı́rez (1958–). While candombe rhythm has
been adapted to the drum set and other percussion instruments like congas,60 it
is common to find bands that include a small cuerda de tambores as rhythmic
accompaniment, see Fig. 2.14.

Figure 2.14: Rubén Rada at a live show with candombe drums as rhythmic accompaniment.

60Since the 1970s there has been a very respectful approach by some non-Afro-
Uruguayan musicians [6], mainly percussionists, which led to methodical reformulations
of candombe rhythm to the drum set and percussion instruments, see for instance [257].
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Chapter 3

Data collection and generation

This chapter is based on work originally reported in [255] and [219]. The descrip-
tion herein reproduces some passages of the articles and also includes modifications
and additions in order to put the work in the context of this dissertation.

3.1 Introduction
The development of computational tools for musicological studies and musical
analysis has been a very active and promising area of research in recent years [291].
It is always essential for this type of research to count on a representative annotated
dataset of the corpus under study, both for the development and testing of the
techniques and tools, and for the proper musicological analysis. Several datasets
for development and evaluation of MIR applications have been released, from the
pioneering and widely used RWC database [131–133] to more recent endeavours
such as the Million Songs Database [43] or the MendelyDB [47]. While most
of them are devoted to audio recordings, the ENST-Drums database [121] is a
collection of audio and video recordings for drum signal processing. The availability
of suitable annotations—such as beat structure, chords or melody line—is a critical
issue that determines the usefulness of such datasets [182]. Even though some
software tools have been developed to alleviate the process [66], producing those
labels is usually a very time consuming task, manually done by music experts.

The present chapter is devoted to the description of the data and music col-
lections used during this thesis work. The musical setting considered is small-size
candombe ensembles, of three to five drums. Since the sort of data needed to con-
duct this type of research were not previously available, an important amount of
work was dedicated to collecting and labelling audio recordings. In addition, some
software tools were devised to render synthetic rhythmic patterns into audio files
in order to carry out some studies. Besides, recording sessions were also conducted
with the aim to produce an audio-visual database of candombe performances, that
could serve both documentary and research purposes.

The following section describes the generation of synthetic rhythmic patterns
and performances, together with ground-truth annotations. After that, Section 3.3
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presents a dataset of labelled candombe recordings for beat and downbeat tracking
that was produced during this thesis work and is available for the research commu-
nity. In Section 3.4, the process of creating the audio-visual database of candombe
performances is detailed, including the annotation efforts carried out and some of
the technical challenges tackled.

3.2 Synthetic rhythmic patterns and performances
During the development of the techniques proposed in this work, it turned out
that testing them under tightly controlled situations was extremely useful. For
this reason, a set of software tools was devised to produce sample-based synthe-
sized candombe patterns. This avoids some aspects concerning performance, such
as micro-timing variations, or regarding recording conditions, such as reverbera-
tion and noise, and simplifies the process of creating the ground-truth labels. The
ability to precisely synthesize audio files from scores proved to be a very valuable
research resource. For instance, the same synthetic example rendered at different
beats per minute allowed a detail study of the influence of tempo in the perfor-
mance of the beat tracking algorithms. The tools were crafted by Luis Jure, and
the author of this thesis put them into practice and implemented some features,
such as the generation of onset labels.

The process for creating a synthetic candombe pattern encompasses the fol-
lowing steps. Firstly, a score is produced using the Lilypond1 music engraving
software language, adopting some conventions to represent the different instru-
ments and types of strokes (as introduced in Section 2.3.2). By compiling this
code, a sheet music file is obtained, along with a text file containing a list of
events and control messages. Then, this information is parsed and processed using
a Python program to produce a score file that is interpreted by an “orchestra”
written in the Csound2 sound synthesis software. Several samples of each type of
stroke, previously recorded by a professional musician, are selected randomly by
the synthesis program, which is able to interpret local accents and gradual vari-
ations in dynamics (e.g. crescendo), as well as tempo indications and progressive
changes (e.g. accelerando) from the score. According to the onset time, the type
of sound, and some additional information such as dynamics, an audio file with
a sampling rate of 44.1 kHz and 16-bit precision is generated. Precise ground-
truth labels are also produced during the synthesis process in the form of text files
which indicate the location of beats, downbeats and the onsets of each drum type.
Fig. 3.1 depicts an example of the audio waveform and the ground-truth labels
obtained through the synthesis process.

Apart from rendering the basic rhythmic patterns and combinations of them
into synthetic audio files, additional examples were prepared by Luis Jure, which
try to simulate real performances. This was carried out taking into account alter-
ations and ornamentations of the piano drum pattern and variations of the clave

1http://www.lilypond.org/
2http://www.csounds.com/
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pattern. Besides, the parts of the repique drum were constructed from transcrip-
tions of recorded executions by renowned drummers,3 combining typical motifs
and forms. The music scores of two of these synthetic performances are provided
in Appendix C.

19 20 21 22

Candombe synthesis example 1

 

 

chico

piano

repique

Figure 3.1: Bars 19 to 22 of the synthetic example 1 from Appendix C. Vertical lines in the
upper part of the waveform plot indicate the location of beats, whereas the ones in the lower
part correspond to the downbeats. Onsets of each type of drum are also depicted with markers.

3.3 Dataset for beat and downbeat tracking
A dataset for beat and downbeat tracking of candombe recordings was compiled
and annotated for this work. It was released to the research community with the
publication of [219], being the first resource of this type available for candombe.4

The recordings were collected in the context of musicological research over the
past two decades, encompassing various recording sessions conducted by Luis Jure
in 1992 and 1995, and one recording session carried out as part of this thesis work,
which is described in detail in Section 3.4. All the recordings were produced in
studio using professional audio equipment. The audio files of the dataset are stereo
with a sampling rate of 44.1 kHz and 16-bit precision.

The dataset comprises 35 complete performances by renowned players, to-
talling over 2 hours of audio, in groups of three to five drums. A total of 26 tambor
players took part in the recording sessions, belonging to different generations and
representing all the important traditional candombe styles (the list of performers
is provided in Appendix A).

The location of beats and downbeats was annotated by Luis Jure, adding to
more than 4700 downbeats. The annotation process involved real-time tapping to
the recordings, followed by the adjustment of the placement of some beats manu-
ally. The annotations were released as comma-separated value files (.csv) in which
data is stored as plain text, following the file format described in Section 3.4.4.

3Pedro ‘Perico’ Gularte, Segio Ortuño, Waldemar ‘Cachila’ Silva and Wilson Martirena.
4Available from http://www.eumus.edu.uy/candombe/datasets/ISMIR2015/.
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3.4 An audio-visual database of performances
This section describes the creation of an audio-visual database of candombe perfor-
mances in the context of this research. It is intended for computational musicologi-
cal studies, and includes annotations of metrical information (beat and downbeat),
temporal location of strokes and sections. A discussion on the technical require-
ments and tackled challenges is provided, in the hope that it can be useful for other
researchers involved in producing datasets for computational analysis of music.

The goal was to generate useful data that could serve to analyse a percus-
sion performance in an efficient, affordable, and non-invasive manner. Although
different approaches were considered such as motion-capture systems and various
types of sensors [283], audio and video recordings were favoured as non-intrusive
means of capturing the performance. Thus, five renowned candombe drummers
were recorded on a multi-track audio system and simultaneously filmed by three
video cameras. Besides, in order to properly register the fast movements of the per-
cussionists, high frame rate videos were also produced, by means of two additional
affordable cameras adapted for this purpose.

The author of this thesis acted as producer of the session and was responsible
for the audio recording. In addition, he supervised the group in charge of the
high-speed cameras. Luis Jure was the music curator, which involved among other
tasks, selecting the group of performers and conducting the recording session.

3.4.1 Group of performers
Several factors had to be taken into account when selecting the group of players
to participate in the session. The first criterion was to pick players of the highest
level, and representative of the most authentic tradition of candombe drumming.
But in addition to the individual quality of each player, the balance of the ensem-
ble as such also had to be carefully planned. The first basic condition was that
all the drummers had to belong to the same barrio, in order to guarantee stylistic
compatibility; but musical and personal understanding and affinity among all the
performers was also essential. One final consideration was including some perform-
ers proficient in more than one type of tambor, in order to have a wider range of
combinations with the limited number of players that could be convened.

Eventually, a group consisting of five performers was assembled, all of them
belonging to families of long-standing tradition in the community of barrio Palermo
(Ansina): Gustavo Adolfo Oviedo Grad́ın (b. 1953), Fernando Silva Pintos (b. 1955),
Sergio Ariel Ortuño Priario (b. 1966), Héctor Manuel Suárez Silva (b. 1968), and
José Luis Giménez Garćıa (b. 1969). Besides being widely acknowledged as out-
standing players in one or more types of tambor, and having led the cuerda de
tambores of several comparsas, they all have vast experience as professional musi-
cians and performing artists in different settings of popular and orchestral music.5

5Most notably in the “Suite de Ballet según Figari” (1952) by Uruguayan composer
Jaurés Lamarque Pons (1917–1982), an orchestral piece that includes Candombe drums
in the last movement.
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Gustavo Oviedo, one of the most important and influential players of tambor
piano of the last decades, has been for many years the leader of the drums of barrio
Palermo. Together with his late brother Edinson “Palo” Oviedo, he has directed
two important comparsas of the neighbourhood: Concierto Lubolo and Sinfońıa
de Ansina. Although a strong player of tambor piano in a llamada de tambores,
Fernando “Hurón” Silva is mainly known as a virtuoso player of repique in small
groups. Together with the Oviedo brothers, he co-led the comparsa Concierto
Lubolo in the 1980s and early 1990s. At that time, the three of them formed a
legendary trio that participated in many important recording sessions of Urugua-
yan popular music.6 During the session, Oviedo and Silva only played piano and
repique respectively.

The three remaining performers belong to a younger generation, and the three
are known as accomplished players of the three types of drum. Luis Giménez played
chico and repique, while both Sergio Ortuño and Héctor Manuel Suárez (primary
repique and piano respectively), played the three drums in different takes. The
number of takes of each drum for the different performers is provided in Table 3.3.

3.4.2 Recording session
In order to encompass both the documentary and research purposes, the recording
session had to be carefully prepared. It was devised taking into account a wide
range of possible MIR problems, such as drum event detection, audio source sep-
aration, automatic transcription, beat-tracking, and audio-visual music analysis.

Several pilot studies were carried out to evaluate technical requirements and to
test different solutions. A preliminary recording session—with a group of four pro-
fessional percussionists—was conducted in studio, which allowed to foresee some
difficulties and to identify shortcomings beforehand.

The selected venue was a modern medium-size concert hall, called Zavala Mu-
niz, which is part of the Soĺıs Theatre building, located in Montevideo. Among
other facilities, it provided appropriate lighting and acoustic conditions. The
recording session took place on September 6th 2014, and lasted for about 6 hours,
involving a crew of a dozen people.

Audio recording

The audio set-up was selected to produce two main different outcomes: a stereo-
phonic recording of the ensemble and separate audio channels of each drum. The
aim of the former is to provide a realistic spatial sound image of the scene, with
good localization of sources plus the effects of the room acoustics [34]. Conversely,
the purpose of the separate channels is to record only the direct sounds coming
from a given drum, with no interference from the others. This is intended to facili-
tate the analysis and transcription—either automatic or manual—of the individual
performances. Additionally, in this way, the whole set of channels constitutes an
appropriate research framework for sound source separation.

6Among many others, with noted Uruguayan musician Jaime Roos.
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The selected microphone set-up allows for different options to create a stereo-
phonic audio mixture. Two coincident microphone techniques [97] (in which spatial
image is only based on intensity differences) were adopted: a pair in mid-side (MS)
configuration and a pair in XY pattern. The XY microphone pair was mainly in-
tended as a backup and was connected to a separate portable digital audio recorder.
Unlike the fixed spatial image of the XY pattern, the MS technique gives some
flexibility to adjust the width of the stereo spread after the recording is finished.
Besides, the mid MS channel grants monoaural compatibility, whereas collapsing
the XY tracks into mono can result in some phase cancellation in high frequencies.
Finally, since both pairs were placed close to each other, this audio redundancy
can be used to study the influence of the microphones on problems such as source
separation or sound recognition.

In addition, a spaced microphone technique [97] (which also captures time-
of-arrival differences) was applied, using a pair of omnidirectional microphones
in AB configuration. The AB pair was placed in a T-shape array with respect
to the coincident stereo pairs, so that they form a three-point pick-up pattern
called Decca tree [97] (after the record company). By combining the coincident
and spaced microphone techniques into a stereo downmix, a good compromise
between spatial sense, stereophonic image and centre definition can be obtained.
Furthermore, the low frequency response is improved by the contribution of the
omnidirectional microphones, compared to that of the directional microphones
used in the coincident pairs.

Separate audio channels were obtained by close-miking each drum and record-
ing them to independent tracks. Yet, achieving good source separation given the
high sound pressure level produced by the drums turned out to be challenging.
Previous tests were conducted with acoustic panels standing in-between musicians
(called gobos) to reduce spill from one instrument into the other spot microphones.
Although effective, they interfere with a natural performance and were discarded.
Eventually, a set of dynamic microphones—tailored for percussion instruments—
yielded the best results among the tested options. They are able to handle high
pressure levels and their moderate sensitivity prevents them from picking too much
sound from other drums.

Table 3.1, summarizes the microphone set-up and gives additional details, in-
cluding manufacturer and model of microphones and recorders. All the mics chosen
for recording the spatial sound image were of condenser transducer type, for their
higher sensitivity to capture distant sounds, reverberation and nuances. Audio
was recorded at a sampling rate of 48 kHz and 24-bit precision. An outlook of the
stage is shown in Fig. 3.2, during the performance of a five-drum ensemble.

Video recording
For documentary purposes a conventional video filming set was used. It comprises
three video cameras equipped with professional grade lenses, two Canon 7D and a
Sony alpha-99. Video was recorded at 24 frames per second (fps) and 1920x1080
pixel resolution (HD, H.264). One of the cameras always captured a wide shot
of the ensemble, while the other two focused on closed-up views of the repique
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Sound Devices 788T-SSD

channel 1 Schoeps MK 4 cardioid mid
channel 2 Schoeps MK 8 figure 8 side
channel 3 Sennheiser E604 cardioid spot
channel 4∗ Sennheiser E604 cardioid spot
channel 5 Sennheiser E604 cardioid spot
channel 6 Sennheiser E604 cardioid spot
channel 7 AKG C414 omni left
channel 8 AKG C414 omni right

Tascam HD-P2

channel 1 Neumann KM 184 cardioid left
channel 2 Neumann KM 184 cardioid right

∗ Neumann TLM 103 in isolated strokes and solo performances.

Table 3.1: Input list and microphone set-up for audio recording.

Figure 3.2: Stage outlook during a five-drum performance.

and piano players, as depicted in Fig. 3.3. A traditional clapperboard was used
for embedding a visual and aural reference to synchronize the different audio and
video sources.

Due to the very fast movements of an accomplished percussionist playing can-
dombe, the computational analysis of a performance based on video records at
conventional frame rates (e.g. 24 fps) is quite limited. For this reason, high-speed
cameras were also employed. From a survey of commercially available cameras of
this type, the GoPro HERO3+ Black Edition was chosen as an affordable option.
Coincidently, it has been recently reported to be used for similar purposes [289]. It
is a rugged and compact action camera, primary associated with outdoor sports,
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Figure 3.3: Video framing examples, a wide shot of the ensemble (above) and close-up view
of the repique performer (below).

often attached to helmets or surfboards. Thus, various technical issues had to be
tackled to adapt it for the current application.

Based on previous tests, a frame rate of 240 fps and 848x480 pixel resolution
was selected. This produced reasonably smooth data and low blur of moving ob-
jects, and proved to be suitable for automatic processing. At such high frame
rates, fluctuations in the lighting conditions are critical and the power-line flicker
effect can arise. Experiments conducted in advance in the concert hall suggested
that the change in brightness of the existing incandescent lamps was not trou-
blesome. However, moderate lighting fluctuations—almost not perceivable to the
naked eye—are present in the recorded videos, and can hinder the performance of
video processing algorithms if not properly dealt with.
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Two cameras of the same type were used simultaneously, which provided—
apart from hardware backup—a stereo recording that can be used for 3D analysis
and scene reconstruction (see Fig. 3.4). This entailed a calibration process with a
chequerboard pattern during the recording session.

By rotating 90◦the wide angle field of view, a more adequate framing was ob-
tained. The camera has no view finder, so it had to be connected to a display
screen in order to check the correct framing of each video take. A remote control
allows for basic operation of the device, but the wireless communication has to be
enabled, which is a power demanding feature. For this reason, battery endurance
was not enough and connection to a power supply became mandatory. Conse-
quently, the need of wiring the camera, for monitoring and powering, prevented
the use of the standard housing and mounting accessories. Besides, only relying
on the remote control turned out to be not sufficiently robust and access to the
buttons had to be granted. Access to the SD card slot was also necessary (which
is not possible with the housing), to readily transfer the large files generated at
high frame rate. Given all these requirements, a custom camera mounting had to
be made, capable of holding two cameras in upwards position, with an adjustable
distance between them and providing access to all the necessary connections and
buttons. This mounting can be seen in Fig. 3.5, attached to a standard tripod.
Because of the fixed focal length of the camera, the tripod had to be placed not
very far from the subject to get a detailed view. As a result, only one musician
was effectively recorded at high-speed in ensemble performances.

The scene was slightly prepared for research purposes, to aid the application of
automatic video processing techniques and to simplify the evaluation of algorithms.
This was done in a non-invasive manner, taking care not to alter the sound of
the drums or disturb the performer. As shown in Fig. 3.4, the stick and the
contour of the drumhead were painted to ease their automatic segmentation. In
addition, some fiducial paper markers were attached to the floor, the drum and the
performer’s body for evaluation purposes. All the drums used were 3D scanned
using a Kinect system to accurately register shape data in case it could be useful
for future research.

3.4.3 Dataset
During the recording session, three different types of content were registered,
namely, isolated strokes, solo performances and drum ensembles. The dataset
comprises 51 takes, totalling a duration of nearly an hour and a half. This section
provides a short description of how each type of content was rendered, as well as
their intended purposes.

Some musicians were asked to change role during the session and played dif-
ferent drums. Besides, for the sake of data variability, different instruments of the
same drum type were used. To do that, two instruments of each type (i.e chico,
repique and piano) were utilized. This set of drums was previously prepared, by
painting the drumhead contour and attaching some fiducial paper markers to the
shell and drumhead (as shown in Fig. 3.4). But in addition, the performers were
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Figure 3.4: Matching frames of the stereo recording pair.

Figure 3.5: High-speed cameras in stereo pair with custom-made mounting, wired to two
screens and power supply.
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3.4. An audio-visual database of performances

asked to bring their own instruments—which where obviously not prepared—and
part of them were involved in recording isolated strokes and drum ensembles. Ta-
ble 3.2 shows the number of takes of each content type, and Table 3.3 provides the
number of takes in which each performer is involved.

Strokes Solo Ensembles

chico 4 chico 8 three drums 9
repique 4 repique 10 four drums 3
piano 3 piano 8 five drums 2

Table 3.2: Number of takes of each content type.
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Silva 1 3 8
Suárez 1 1 1 3 2 3 2 1 6

Ortuño 2 1 1 2 2 2 2 8 1
Oviedo 1 3 9

Giménez 1 1 3 3 10 2

Table 3.3: Number of takes by each performer.

Isolated drum strokes

The musicians were asked to produce the sound of individual strokes separately,
and were recorded in turns playing different drums. These strokes are supposed to
be the same they would use in a real performance. Therefore, they were requested
to render some particular stroke types, but also to include those that belong to
their personal repertoire.

The set of isolated drum sounds is intended for two main different uses: firstly,
to provide a database of strokes suitable to train and evaluate sound recognition
algorithms, which are typically part of automatic transcription systems; secondly,
to build a set of audio samples of each stroke type to be used in the sample-based
audio synthesis process described in Section 3.2.

Solo drum performances

Although candombe is—above all—a collective form of music, part of the session
was devoted to recording each musician alone executing the rhythmic patterns of a
certain drum. They were asked to play at different tempos and in different styles,
and freely developed their improvised parts.
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The aim of these recordings is to avoid any interference from other drums,
something which is not completely fulfilled by the separate channels of an ensemble
recording. In this way, automatic tasks such as onset detection can be carried out
without the need to deal with spurious events from other drums. In addition, this
allows, for instance, to study spectral timbre features for sound recognition in a
more realistic situation compared to that of the isolated strokes. Ultimately, these
performances can be contrasted with that of ensembles, in order to investigate to
what extent musical behaviours are alike.

Drum ensembles
Ensembles were recorded in groups of three, four and five performers. The first
case corresponds to a candombe ensemble in its minimal form, that is, one of each
of the three drums. In the case of four performers, an extra repique was added to
the ensemble. Finally, the groups of five drums consist of two piano, two repiques
and one chico.

As a result, 14 complete ensemble recordings were produced, that last from
about 2 to 4 minutes each, for a total of 40 minutes. The different groups, which
involved several combinations of the same musicians (as well as some of them
in different roles), yielded various sorts of interactions and performance types.
For instance, different characteristics typologies were executed for beginning the
performance, including piano anacrusis and several variations of the clave pattern.
In the same way, different dynamics and tempo—as well as variations of them—
were also performed.

Care was taken to alternate the type of drum in front of the high-speed cameras,
in order to have a balanced record of repique and piano performances in ensemble.
The resulting separate audio channels are adequate for several automatic tasks such
as onset detection, transcription and source separation. The amount of interference
from other drums depends on the distance between performers. For this reason,
the best results were obtained for the recordings of three drums, in which the
performers were farther apart.

Evidently, the most important aspect provided by ensemble performances com-
pared to the previous recordings is the interplay between musicians. This encom-
passes call-and-response interactions, alternations of musical roles, variations in
dynamics, temporal synchronization, and collective modulations of tempo, just to
name a few. Among the various aspects that can be studied from these recordings,
the different forms of interaction and the entrainment processes involved are some
of the most appealing. Besides, the different sorts of musical embodiment are also
of great interest. For example, foot tapping can be observed in the wide shot of
the ensemble (see Fig. 3.3-above).

3.4.4 Annotations
Manual labelling of music is notably a laborious process, for which software tools
have been developed [66] and methodologies and file formats have been proposed
[182]. The annotations are very useful for both musicological studies and the
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development of music information technologies. This section describes some of
the efforts that were accomplished—and others that are still being conducted—
regarding the annotation of this dataset.

Beat and downbeat annotation
The 14 ensemble takes were annotated with beat and downbeat labels by Luis
Jure. These recordings and labels are part of the dataset used for beat and down-
beat tracking, which is described in Section 3.3. Besides, the annotation of solo
performances is currently being carried out and will also be released. It has al-
ready been completed for the piano solo recordings, which were used within this
work in rhythmic pattern analysis and downbeat tracking.

The annotations are provided as comma-separated values files (.csv) in which
data is stored as plain text, as shown in Fig. 3.6. The files contain two columns,
and each line corresponds to a beat. The values in the first column are the time
instants of beats in seconds. The numbers on the second column are two values
separated by a dot, which indicate the bar number and the beat number within
the bar, respectively. For instance, 1.1, 1.2, 1.3 and 1.4 denote the four consecutive
beats of the first bar. Hence, each label ending with .1 corresponds to a downbeat.

1.78875, 1.1

2.31252, 1.2

2.83536, 1.3

3.35711, 1.4

3.87728, 2.1

4.39545, 2.2

4.91217, 2.3

5.42815, 2.4

... , ...

Figure 3.6: Example of the format of the beat annotation files.

Annotation of onset and stroke type
Another effort was undertaken to annotate the location of each onset and its
stroke type. To this effect, solo performances and separate channels of the ensem-
ble recordings are used. The annotation process is facilitated by automatically
locating events through a standard onset detection algorithm based on spectral
flux [94], which is described in Section 4.3. The resulting events are manually
validated and/or corrected, by inspecting the audio and video files. Finally, a
certain class label representing the stroke type is manually assigned to each onset.
These annotations can be used in research on onset detection, sound recognition
and automatic transcription.

The author of this thesis extracted, manually checked, and corrected when
necessary, the location of all the onsets from the separate channels of the 14 en-
semble recordings, totalling about 40000 events. This was used in the study of
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micro–rhythmical properties of candombe drumming, that was reported in [159]
and [251], and is described in Section 5.3. In addition, the author annotated eight
recordings of repique solo performances from the preliminary studio session, indi-
cating onset location and stroke type out of six different classes, for a total of more
than 4000 strokes. The annotations, audio files and high-speed videos, were used
for the development of an audio-visual transcription system which was reported
in [197]. Eventually, all this material will be available to the research community.

Miscellaneous annotations
Several other sorts of annotations were produced—some are still being generated—
that depend on the type of research problem addressed and the particular char-
acteristics of the dataset. For example, an experiment was conducted attempting
to identify those temporal segments of a repique performance when the clave pat-
tern is played, which was reported in [252]. This involved manual annotation of
separate tracks from ensemble recordings and yielded very informative data about
the interaction of two repique performers playing together, as described in Sec-
tion 4.4.4. The annotated sections in which the clave pattern is played were used
for the study of their different types and variants, as reported in [160] and detailed
in Section 5.2.

Regarding to the high-speed videos, precise annotation of the most impor-
tant objects that appear in the scene—namely, the drumhead, the stick and the
performer’s hand—is necessary for the development and assessment of automatic
detection algorithms [197]. This is a very time consuming task, and efficient la-
belling mechanisms are being developed based on the fiducial markers.

3.5 Conclusions
This chapter introduced the datasets used along this thesis work and—since they
were not previously available—described the necessary efforts fulfilled to generate
them. This involved an important amount of work, including collecting and la-
belling audio files, conducting various recording sessions and developing custom
software tools for audio synthesis. A detailed description of the tasks, require-
ments and technical challenges involved in producing the audio-visual database of
candombe performances was provided.

Apart from the documentary value and its potential in educational activities,
there are different research strands that can benefit from the produced datasets.
A continuous effort to extend the existing annotations of the dataset has to be un-
dertaken, in order to expand its possible applications. As a result of this research,
a database of audio recordings and annotations for beat and downbeat tracking
was released. As part of the future work perspectives, the whole data produced—
including the annotations—will be ultimately available to the research community
to foster reproducible research.
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Audio features

This chapter reproduces some passages of articles [252] and [254], and also includes
all necessary modifications and additions in order to put the work in the context
of this thesis.

4.1 Introduction
The extraction of musically meaningful content information via automatic analysis
of audio recordings has become an important research field in audio signal process-
ing. Most of this research has concentrated on pitched instruments, and only in
the past decade percussion instruments have gained interest, mainly focusing on
the standard pop/rock drum kit [113]. The striking of a drum membrane produces
a very short waveform that can be modelled as an impulsive function with broad-
band spectrum [114], whose accurate characterization and analysis is a challenging
problem in signal processing. First, some method has to be applied to automat-
ically find the occurrence of sound events (onsets) and to precisely determine its
temporal location. This is usually implemented in the form of a detection function
that emphasizes the onset of notes by detecting changes in some properties of the
audio signal, such as the energy content in different frequency bands, namely the
spectral flux [94]. Besides, features computed from the audio signal can provide
additional information about an event, such as the type of percussion instrument
which produced it, or the particular class of stroke articulated. Both tasks—onset
detection and sound classification—are of paramount importance in several appli-
cations, from computer-aided musicology to automatic music transcription.

Many techniques for onset detection have been proposed, a good deal of which
are reviewed in [37, 76, 94]. The most typical methods are simple to implement
and have low computational complexity, usually involving spectral and/or phase
information alone [50]. Current state-of-the-art methods for onset detection are
based on a probabilistic model and incorporate a recurrent neural network with the
spectral magnitude and its first derivatives as input features [100]. However, for
percussive onsets their performance is similar to that of traditional methods, such
as those based on the spectral flux, which are less computationally demanding
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and do not require a training phase as in the case of neural network methods.
Detection of percussive onsets is claimed to be a solved problem [53], given that,
for instance, state-of-the-art methods achieve F-measure values greater than 0.90
on the 30 solo drum excerpts of the MIREX evaluation campaign.1 Yet, there is
still room for improvement towards even more robust and versatile tools.

Regarding sound classification, even if the problem of dealing with isolated
sound events is widely studied [140], the performance of the available methods
largely decreases when simultaneous sounds and real performances are consid-
ered [138, 272]. Existing approaches for percussion transcription can be roughly
divided into two types [113]. Most of the proposed solutions apply a pattern
recognition approach to sound events. Firstly the audio signal is segmented into
meaningful events, either by detecting onsets or by building a pulse grid. Then,
audio features are computed for each segment, usually to describe spectral content
and its temporal evolution [113, 138, 140, 230]. Finally, the segments are classified
using pattern recognition methods [230, 279]. The other usual approach is based
on segregating the audio input into streams which supposedly contain events from
a single percussion sound class, by means of signal separation techniques [67,122],
or simply by sub-band filtering [208]. After that, a class is assigned and an onset
detection procedure is applied to each stream. In fact, there are even some ap-
proaches that do not fall into any of the previous categories, either because they
combine aspects of both [231], or because they aim at the detection of high-level
rhythm patterns [282]. Other distinctions can be made, such as whether the clas-
sification is supervised or not, and whether it takes or not high-level musicological
information into account [113].

In this chapter, the audio features used throughout the thesis are presented.
A typical approach is adopted based on the spectral flux, which is well-suited
for dealing with the percussive events at hand. In Section 4.2, the audio feature
extraction process and some representations built upon it are described. Then,
the usefulness of the features is assessed in the context of onset detection and
classification of candombe drum sound events, in Sections 4.3 and 4.4 respectively.
An approach that models for sound classification the same type of spectral flux
features employed in onset detection is tested for recognizing drum sounds in
audio signals. Two type of experiments are reported involving recordings of real
performances, one which aims at finding the predominant candombe drum heard in
an audio file, while the other attempts to identify those temporal segments within
a performance when a given sound pattern is played. The experiments address
audio files in which a predominant instrument suffers the interference from some
others. This type of audio file could be either the result of a signal separation
technique as previously described, or coming from a microphone placed close to an
instrument when a multi-instrument performance is recorded. The latter situation
is common practice in some music productions or musicological field studies [239],
and is the case of the dataset considered in the reported experiments, which was
introduced in Section 3.4. Finally, the chapter ends with some discussion on the
audio features adopted and on the results of the reported experiments.

1http://www.music-ir.org/mirex
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4.2 Audio feature extraction
The audio features applied throughout this research work are based on seizing
the changes in the spectral magnitude of the audio signal along different frequency
bands. This typical approach can be tracked back to pioneering work such as [199],
and is usually referred to as spectral difference or spectral flux [94]. In the fol-
lowing, the classical formulation is introduced and some variants are described,
particularly frequency scaling and log-magnitude whitening, along with a discus-
sion of its potential impact on the percussive sound events of interest. Then, some
processing steps used for the analysis of rhythmic patterns, namely normalization,
time quantization and sub-band analysis, are described. Finally, a representation
in the form of a feature map is proposed as a means to study similarities and
differences among the rhythmic patterns as well as their evolution over time.

4.2.1 Spectral flux
The first step to compute the spectral flux of a discrete-time audio signal x[n] is
calculating its Short-Time Fourier Transform (STFT), which is defined as

X(m, k) =
1

N

N−1∑
n=0

w[n−mh] x[n] e−j
2π
N
kn, (4.1)

where m stands for the index of the signal frame being analysed, k is the frequency
bin index, h is a hop size in samples and w[n] is a smoothing window, for instance
a Hann window, such that w[n] = 0 ∀ n outside the interval 0 ≤ n < N . Then, the
magnitude of the short-time spectra (i.e. the spectrogram) is time-differentiated via
first-order difference and the resulting sequences are half-wave rectified to consider
only positive magnitude changes. Finally, the detection function is obtained by
summing along all frequency bins. This can be expressed as

SF (n) =

N/2∑
k=0

H (|X(n, k)| − |X(n− 1, k)|) , (4.2)

with H(x) denoting the half-wave rectification function, i.e. H(x) = x+|x|
2 .

In principle, the feature value is high when a stroke has been articulated and
close to zero otherwise. But in addition, the detection function also carries some
information on the type of articulation. For instance, an accented stroke produces
a higher feature value compared to a muffled one, since the spectral change is more
abrupt and typically encompasses a larger frequency bandwidth.

Logarithmic magnitude
A frequent preprocessing step in the computation of the spectral flux is compressing
the magnitude of the STFT before differentiation by using a logarithmic function.
This better correlates with human perception of loudness, and was reported to be
useful for onset detection [167]. Note that taking the derivative of the logarithmic
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magnitude of the STFT is equivalent to dividing the derivative by the magnitude
of the STFT, which corresponds to a relative differentiation. This is consistent
with psychoacoustic knowledge, since the perceived increase produced by a certain
change in the amplitude of the signal depends on its initial level: the same amount
is more noticeable when the signal is soft than when it is loud [167]. Besides,
whitening of the spectrum can improve onset detection [277], and the use of a
logarithmic function can be regarded as a kind of whitening which emphasises
higher frequency bands.

The amount of compression can be controlled by a parameter λ (a way to
customize the norm applied), and the addition of a constant value of 1 avoids
numerical issues, all which leads to the following expression:

Xlog(n, k) = log (λ |X(n, k)|+ 1) . (4.3)

Frequency scaling
A frequency scaling of the spectrogram by a filter bank is a typical variation of
the previously described process [50]. The linearly spaced frequency bins of the
STFT are combined into fewer bands whose centre frequencies follow a scale that
better approximates human auditory resolution, i.e. coarser resolution at high fre-
quencies and finer resolution at low frequencies. Among the most frequently used
frequency mappings are the Mel and the Bark scales [101]. Most of the rhythmic
information of a music audio signal is preserved in spite of the dimensionality re-
duction produced by the filter bank processing [263], which has been shown to be
advantageous for onset detection [76, 167]. Usually a total number of bands B of
about 20 to 80 is used [50,52].

Considering a filter-bank FB(k, b), where k is the bin index of the linearly
spaced frequency scale of the STFT and b is the number of the filter, the filtered
spectrogram can be expressed using the dot product as

Xfilt(n, b) = |X(n, k)| · FB(k, b). (4.4)

This work adopts a bank of overlapping triangular filters as depicted in Fig. 4.1,
whose centre frequencies are equidistant in the Mel scale. The filters are nor-
malized so that no emphasis on higher frequencies is produced by their different
bandwidths. The Mel scale mapping can be computed according to,2

fMel = 2595 log10

[
fHz

700
+ 1

]
. (4.5)

An example of the steps involved in the computation of the spectral flux is pro-
vided in Fig. 4.2 for a short excerpt of a repique performance recorded in studio.
The influences of the logarithmic magnitude whitening and the Mel scale mapping
can be appreciated by comparing the three different feature functions depicted.
Clearly, the third strategy (SF filt

log , i.e. logarithmic magnitude and frequency scal-
ing) produces better defined peaks without increasing the noise floor.

2The actual implementation matches Slaney’s Auditory Toolbox mapping [273].
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Figure 4.1: Mel scale filter bank used for the computation of features.

Normalization
Apart from indicating the occurrence of sound events and carrying some infor-
mation about the type of articulation, the spectral flux also captures the long-
term dynamics of the audio signal, since louder portions take higher values com-
pared to quieter ones. Therefore, different types of normalization are usually
applied to the feature function. For certain tasks, such as onset detection, a global
normalization—implemented by simply dividing the detection function by its max-
imum value—proved to be appropriate for our purposes, as long as an adaptive
threshold is used (see Section 4.3).

However, for the analysis of rhythmic patterns and for addressing the beat and
downbeat tracking problem—as described in Chapters 5 and 6 respectively—the
feature must preserve the local intensity variations that characterize the different
articulations within a pattern, but at the same time must not be influenced by the
long-term fluctuations in dynamics that may arise throughout a performance.

For this reason, the detection function was normalized by the p-norm within a
local window centred at the current time frame as

SF (n) =
SF (n)

p
√∑∆

m=−∆ |SF (n+m)|p
, (4.6)

where p controls the type of norm applied and ∆ determines the window length.
The former has to take a high value (for instance, p = 8 was used for most of the
reported results), so that if the feature in the current frame is close to the highest
value within the window it is normalized to 1. For the normalization to behave
as desired, the ∆ parameter must be selected such that several sound events lay
within the window. This can be implemented by considering ∆ to be proportional
to the tatum period of the performance, that is

∆ = T τ, (4.7)

where τ stands for the tatum period in samples and T takes an integer value
such that T > 0. In most cases, a value of T = 4 was used, which corresponds
to a window of half a bar centred at the current time frame. Note that the
tatum period is estimated either from the labelled tactus pulses for the analysis
of rhythmic patterns (see Chapter 5), or directly from the audio signal when beat
and downbeat tracking is tackled (as described in Section 6.2.2).
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Figure 4.2: Example of spectral flux computation for a short excerpt of a repique performance,
and comparison of the influence of the logarithmic magnitude and the frequency scaling steps.
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Time quantization

For the analysis of rhythmic patterns the feature signal is time-quantized by con-
sidering a grid of tatum pulses equally distributed within the labelled tactus beats.
The corresponding feature value is taken as the maximum value of the feature sig-
nal within a 100 -ms window centred at the frame closest to the tatum instant.3

This yields 16 -dimension feature vectors in which each coordinate corresponds to
a given tatum pulse within the bar. Although intended to illustrate the sub-band
analysis of the next section, Fig. 4.3 provides an example of time quantization of
the feature function, in which the selected values are indicated by crosses.

4.2.2 Sub-band analysis
Given the distinct registers of the different drum types and the high frequency
content of the madera sound of the clave pattern, a rough separation of the rhyth-
mic patterns was pursued by sub-band filtering as in [208]. This was implemented
by summing the spectral flux along different frequency bands, as in [174].

Some controlled experiments were conducted in order to test the validity of
this separation approach and to determine the frequency-band boundaries. To
that end, synthetic test audio signals rendering different rhythmic patterns were
produced with the software tools described in Section 3.2. Fig. 4.3 shows the
spectral flux in three different frequency bands for two bars of a synthetic signal
comprising piano, chico and clave patterns (as in Fig. 2.13). The articulated beats
of each pattern are depicted with dots for the low, medium and high frequency
bands, respectively. It can be seen that peaks in the feature signal approximately
match the synthesized patterns. Also, if the median of the feature values for each
tatum beat within the bar is computed along the whole audio file, the resulting
feature profiles are consistent with the synthesized patterns, as shown in Fig. 4.4a.

To take into account a more realistic scenario, the same type of analysis is
presented in Fig. 4.4b for a 30-second excerpt from a field recording of a candombe
performance. The ensemble is composed of one drum of each type, and the repique
plays a clave pattern in between improvised phrases. It can be noticed that the
prototypical patterns of piano, chico and clave, which are depicted with dots as
reference, show some differences to the feature values. However, careful inspection
of the audio file reveals that the feature profiles in fact correspond to the actual
patterns played in the recording. In particular, the chico pattern is played by also
softly articulating the first beat and with a very accentuated hand stroke at the
second, whereas a variation of the clave pattern is performed in which the third
stroke is shifted to the next tatum beat (as in a rumba clave). Considering all the
experiments conducted, even thought interference between the different bands may
arise in some cases, the separation approach proved to be quite effective and thus
motivated its application to the analysis of rhythmic patterns and to the problem
of beat and downbeat tracking.

3At a high tempo value of 140 bpm, this quantization window approximately corre-
sponds to half the duration of the tatum period to each side of the tatum beat location.
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Figure 4.3: Example of audio feature extraction: magnitude of the Mel-scaled short-time
spectra (top), half-wave rectified first-order difference (middle), and accentuation feature in
three different frequency bands (bottom). The frequency bands limits are, low: up to 200 Hz,
medium: 400 to 1000 Hz, and high: 1000 to 1600 Hz. The audio signal comprises synthetic
piano, chico, and clave patterns. The articulated events of each pattern are depicted with dots
in the accentuation feature plots for the low, medium, and high frequency bands, respectively.
Frequency band limits are shown with dashed lines and beat locations are depicted with vertical
lines. It can be seen that peaks in the feature signal approximately match the corresponding
patterns. The time-quantized feature values are indicated with crosses.
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(a) synthetic signal (b) field recording

Figure 4.4: Feature profiles for a synthetic audio file (a) and a field recording (b), obtained as
the median of the feature values for each tatum beat within the bar.

4.2.3 Map of feature patterns
A representation in the form of a map of bar-length rhythmic patterns is pro-
posed in this work, which is straightforwardly obtained by building a matrix whose
columns are consecutive feature vectors. An example of this type of map, com-
puted from a complete performance, is provided in Fig. 4.5. The horizontal axis
corresponds to the bar index, while the vertical axis is the tatum beat, increasing
upwards as convention. The features were computed using only the low-frequency
band and then warped into bar-length patterns using the beat and downbeat man-
ual labelling. Therefore, the columns of the map virtually correspond to each of
the bar-length patterns performed by the piano drum along the whole recording.

This representation enables the inspection of the patterns evolution over time,
as well as their similarities and differences, in a very informative way. Note that if
a certain tatum pulse is articulated for several consecutive bars, it will be shown
as a dark horizontal line in the map. Conversely, changes in repetitive patterns
are readily distinguishable as variations in the distribution of feature values. The
example shown in Fig. 4.5 is analysed in detail in Section 5.2.2.
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Figure 4.5: Map of bar-length patterns for a recording of the dataset of Section 3.3. Vertical
axis ticks indicate tatum pulses and horizontal axis ticks correspond to bar index numbers.
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4.3 Onset detection
In this section the usefulness of the spectral flux features previously introduced is
assessed for the onset detection task considering candombe drum sounds. The on-
set detection methods are usually divided into three steps: signal pre-processing,
computation of the onset detection function, and peak picking [100]. The detec-
tion function employed in this case is based on the spectral flux and has been
already introduced, as well as the logarithmic magnitude and Mel-scale mapping
pre-processing steps. The peak selection method has a strong influence on the
results obtained [258], and the one adopted herein is discussed in the following.

4.3.1 Peak picking
Following a method proposed in [94] and later modified in [50], a set of simple peak
selection rules were implemented in which onset candidates, apart from being a
local maximum, have to exceed a threshold that is a combination of a fixed and an
adaptive value. Thus, the spectral flux has to fulfil the following two conditions:

SF (n) = max {SF (n− ω̂pre : n+ ω̂pos)} (4.8)

SF (n) ≥ mean {SF (n− ω̄pre : n+ ω̄pos)}+ δ (4.9)

where δ is a fixed threshold and the ω parameters determine the width of the
moving average and moving maximum filters, i.e. the number of previous and
subsequent points involved. Note that if the ωpos parameters are not zero the
peak selection is not causal. A global normalization was added by dividing the
detection function by its maximum value, which simplifies the selection of the fixed
threshold value across different performances. An example of the peak selection
method is provided in Fig. 4.6 for a repique studio recording, which depicts the
adaptive threshold and the moving maximum condition.

An additional restriction is sometimes applied to limit the minimum time span
between two consecutive onsets [50]. However, the local maximum condition can
be tuned such that among several events occurring in a short time interval only
the most prominent is reported. In a candombe drumming performance there are
several situations of this kind. For instance, the flam is a stroke which consists of
two single strokes played almost together by alternating the hand and stick, and
is commonly played by piano and repique drummers. There is also an ubiquitous
repique stroke in which the stick hits the drumhead several times in a short time
interval, namely a bounce. The moving maximum condition proved to be effective
to deal with these situations.

4.3.2 Dataset
For testing the onset detection method a dataset comprising eight solo perfor-
mances of the repique drum was used. They were recorded in the preliminary
studio session by four professional percussionists (see Section 3.4.2), with a sam-
pling rate of 44.1 kHz and 16-bit precision. The annotation of these recordings
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Figure 4.6: Example of the peak detection method. Selected onsets are marked with crosses.

Fmeasure precision recall

SF 0.979 0.980 0.977
SFlog 0.987 0.985 0.988
SF filt

log 0.987 0.986 0.987

Table 4.1: Onset detection results for the different detection functions.

was carried out by the author and involved using audio and video, for a total of
4132 onsets. Each onset was labelled to a certain stroke type out of six different
classes. This dataset was also used in the evaluation of a multimodal approach for
percussion music transcription from audio and video, which was reported in [197].

4.3.3 Experiments and results
The audio signals were processed in frames of 20 ms length, using a Hann window
and a hop size of 10 ms. The number of Mel frequency bands was set to B = 80
and the compression parameter to λ = 104. The ω parameters were manually set
in order to avoid false positives for strokes that involve several events in a short
time interval, a wide range of values yielding very similar results. For the reported
experiments their values are ω̂pre = ω̄pre = 50 ms and ω̂pos = ω̄pos = 70 ms.

An onset was considered correct if there was an anotation within a window
of ±25 ms centred at the detected event. In this way, the false positive fp, false
negative fn, and true positive tp rates were calculated for the whole dataset. Then,
precision, recall and Fmeasure were computed as

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
, Fmeasure = 2

precision ∗ recall

precision + recall
. (4.10)

The fixed threshold δ was varied from 0 to 1 producing the ROC curves [102]
depicted in Fig. 4.7, for the spectral flux computed without any pre-processing
SF , and with the addition of the logarithmic magnitude SFlog and the Mel-scale
mapping SF filt

log . The best performing configuration for each case was selected
considering the maximum of the Fmeasure, and is reported in Table 4.1.
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Figure 4.7: ROC curves comparing the different detection functions.

The performance of the onset detection is notably high. This is probably
favoured by the fact that only solo performances were considered. In the case of
ensemble performances recorded into separate audio channels, there is some inter-
ference from one instrument into the other spot microphones, which can hinder
onset detection performance. The use of the logarithmic magnitude has a notice-
able effect on the results. Despite the fact that the best performance attained
when adding the Mel-scale mapping is almost identical to the one obtained by
using only the logarithmic whitening, the ROC curves indicate that the frequency
scaling is slightly better when considering a wide range of fixed threshold values.
The inspection of the type of errors reveals that most false positives correspond to
soft madera sounds that are played in between the actual strokes of the pattern
as a subdivision, as well as some strokes of the finger tips on the drumhead also
played as a subdivision, whereas most false negatives are deaccented stick events.

However, it must be noted that the results of this evaluation can not be gener-
alized straightforwardly to other situations, such as ensemble recordings or other
drum types. In order to illustrate this, a separate track of the piano drum from
one of the ensemble recordings of the dataset introduced in Section 3.4 is con-
sidered. The onset detection method previously described was applied, using the
same parameter configuration and an arbitrary value for the fixed threshold. The
only difference is that, since the piano drum is the lowest one, only frequencies
up to 500 Hz were summed up. The resulting onsets were manually checked and
corrected when necessary, for a total of 612 onsets. Finally, the onset detection
was repeated varying the fixed threshold value and changing the different pre-
processing steps, namely the logarithmic whitening and the Mel-scale mapping.

The results obtained, which are presented as ROC curves in Fig. 4.8, clearly
indicate that the logarithmic magnitude whitening is not appropriate in this case,
neither alone nor combined with the Mel-scale mapping. This makes sense, because
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emphasising high-frequency content when low-frequency onsets are pursued, can
only benefit the detection of spurious events from the other interfering drums of
the ensemble. Notably, the Mel-scale mapping alone SF filt considerably improves
the performance results yielding an F-measure of 0.992.

Figure 4.8: ROC curves for the piano recording comparing the different detection functions.

4.4 Audio feature analysis and classification
This section reports two types of experiments which involve the classification of
detected events, one aiming to recognize the predominant candombe drum in an
audio file, and the other attempting to identify those temporal segments of a
repique performance when the clave pattern is played.

The classification is addressed by modelling the same audio features used for
onset detection, namely the spectral flux. To do that, the STFT of the audio
signal is computed in sequential 80-ms duration windows in hops of 20 ms, and
then mapped to the Mel-scale using 160 bands. The resulting sequences are time-
differentiated (via first-order difference) and half-wave rectified. To produce the
onset detection function the obtained feature values are summed along all Mel
sub-bands. For drum sound classification, the vector containing the first 40 Mel
bands, corresponding to frequencies up to 1000 Hz, is employed. This frequency
value was chosen based on some feature selection experiments.

4.4.1 Datasets
A training dataset containing isolated sounds of candombe drums was compiled and
annotated for this work. To this end, recordings from the preliminary studio session
were considered (see Section 3.4.2), in which four percussionists played in turns one
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among a set of three drums (one of each type) called drums-1 hereafter. Automatic
onset detection was performed over each audio track, and the resulting events were
manually checked and labelled as of a certain sound type. A different class was
attributed to each drum type (i.e. chico, repique, piano) besides an additional one
to madera strokes (which sound very similar for all drums). Recording each type of
drum separately greatly simplified the manual labelling process, since once madera
sounds had been identified and labelled in a given track, all remaining events could
be assigned to its (known) drum type. Finally, a training dataset of 2000 patterns
was built through a stratified random sampling (500 of each class).

Figure 4.9: Testing dataset recording session. Drums on the left are also used for training
(drums-1), while drums on the right belong to the set used only for testing (drums-2).

Another dataset of real performances of drum ensembles was used for testing.
This data was collected in the recording session introduced in Section 3.4, in which
five renowned candombe drummers were recorded in a multi-track audio system,
playing in groups of three to five. Two of these group configurations are depicted in
Fig. 4.9. Audio recordings were done using spot microphones close to each drum.4

This provides synchronized audio tracks in which a certain drum is predominant,
whilst there is interference from the other drums. Complete performances of vari-
able lengths were recorded, approximately from two to four minutes each. The
same set of drums, drums-1, used for recording the training samples was used in
all three-player performances. Another set of drums, called drums-2, was involved
in the four- and five-player recordings. This set-up allows for two different types
of experiment regarding the generalization ability of the classification system: one
in which training and testing drums are the same, but recording conditions (e.g.
room acoustics, microphones) and performance configuration (e.g. drum tuning,
percussionist) change; and another in which the instruments are also changed.

4.4.2 Clustering and classification methods
In order to explore the training data, a clustering analysis using the K-means
algorithm [150] was carried out. The distance measure for the analysis should
reflect the similarity in shape between two spectral feature profiles, and turned
out to be a key issue since several measures considered were not appropriate.

4Except for the chico drum in ensembles of five players due to equipment constraints.
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chico repique piano madera

chico 474 23 0 3
repique 78 403 3 16

piano 1 79 420 0
madera 2 2 0 496

% 94.8 80.6 84.0 99.2

Table 4.2: Confusion matrix of a cluster-to-class evaluation for the training data.

The Pearson correlation computed as

C(x, y) =

∑
i(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
(4.11)

=
〈x− x̄, y − ȳ〉
||x− x̄|| ||y − ȳ||

(4.12)

corresponds to the inner product of two sequences x and y normalized to zero mean
and unit standard deviation, and can be seen as a shift-invariant cosine similarity.
By treating the data points as the correlated sequences, their distances can be
measured as

D(x, y) =
1− C(x, y)

2
∈ [0, 1]. (4.13)

The component-wise mean of its points is the centroid of each cluster.

The results of this clustering analysis applied to the training data when setting
the number of clusters K=4 is presented in Fig. 4.10 and Table 4.2. The confusion
matrix in Table 4.2 of a cluster-to-class evaluation, shows that madera and chico
classes are correctly grouped, while piano and repique exhibit a higher rate of
misclassification. A three-dimensional representation computed with multidimen-
sional scaling (MDS) using the same distance measure is included in Fig. 4.10 for
data visualization, and highlights the overlapping of classes. In particular, repique
is the most troublesome class, which is not surprising since this is the drum of
medium size and register, and thus expected to overlap the other drums’ spectra.
This issue is confirmed by the cluster centroids of Fig. 4.10-bottom, whose shape is
consistent with the spectral content of each sound class. The centroid of the piano
drum class has a clear predominance at low frequencies, whereas the centroid of
the madera class is dominant at high frequencies. At medium frequencies, the
centroid of the repique class exhibits a maximum towards the lower range, while
the centroid of the chico class has higher frequency content.

Results of the clustering analysis motivated the idea of testing a very simple
classifier based on the obtained centroids: each centroid was considered as a sin-
gle class prototype in a nearest neighbours classifier (1-NN), using the previously
introduced Pearson correlation distance. Such a classification scheme can simplify
the process of building the training database, since unsupervised clustering can
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Figure 4.10: Cluster centroids and three-dimensional MDS representation of the training data.

substitute for manual labelling. Furthermore, data coming from different sources,
for instance different sets of drums or recording conditions, may be clustered in-
dependently so as to better describe classes with more than a single prototype.

Using the same Pearson correlation distance measure, a nearest neighbour
classifier (k-NN) and a radial basis function support vector machine (RBF-SVM)
were also implemented for comparison. The values for the parameters of the SVM
were grid-searched in a cross-validation scheme.

4.4.3 Predominant drum recognition
Recognition of the predominant drum in a given audio track is tackled in a straight-
forward manner. First, the spectral flux feature is computed, followed by onsets
detection, and classification of each detected event into one of the four defined
classes. The proportion of onsets in each class gives an indication of the predomi-
nant instrument in the audio file.

A simple but effective strategy was adopted to improve the detection of the
repique drum, already identified in the training phase as the most difficult one.
Considering that in a real performance, after the rhythm patterns have been ini-
tiated (i.e. after the first few seconds), madera sounds are played only by the
repique drum, the onsets in the madera class were included in the repique drum
class before computing the proportions.
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Figure 4.11: Results of predominant drum recognition for the three-drum recordings using a
1-NN classifier of training dataset K-means centroids ( chico, repique, piano).
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Figure 4.12: Predominant drum recognition for drums-2 set ( chico, repique, piano).

In the first experiment set-up all three-drum performances were considered.
There are 9 recordings of 3 tracks, totalling 75 minutes and 27 audio files. Note
that in this case, the same set of drums of the training samples (drums-1) was
used. The estimated proportion of onsets for each audio file is shown in Fig. 5.3,
for the 1-NN classifier based on the K-means centroid prototypes. It can be seen
that the majority class always indicates the predominant drum. Similar results
were obtained with k-NN and RBF-SVM, as shown in the next experiments.

The other set of drums (drums-2), not used for training, was employed in
another experiment. There are 6 different drums, 3 piano and 3 repique (no chico).
A track was processed for each drum, totalling 22 minutes of audio. Classification
results are presented in Fig. 5.4 for a 1-NN of centroid prototypes, a 5-NN, and
an RBF-SVM. Although the majority class always reveals the correct drum type,
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there is a noticeable difference in the disparity among classes with regards to the
previous experiment. This seems to disclose some lack of generalization ability to
handle different sets of drums. However, it has to be taken into account that these
recordings involve more than three drums, which reduces the distance between
performers (as seen in Fig. 4.9) and therefore increases the interference (e.g. chico
in the piano tracks for five-player recordings). Differences among classifiers are
marginal, and results are very similar for different choices of k-NN neighbours.

4.4.4 Detection of clave pattern sections
A similar approach was followed for detecting those sections when a repique drum
plays the clave pattern. Five performances in which two repique drums take part
were chosen for this experiment, totalling 10 tracks and 33 minutes of audio.

A clave pattern lasts for a whole musical bar; therefore, the recordings were
manually labelled indicating all bar locations as well as which of them contained
the clave pattern. The onsets in each track were detected and classified. Then, the
proportion of madera onsets to the total detected events within each bar was com-
puted as an indication of the presence of the clave pattern. A two-state classifica-
tion was performed according to a threshold computed using Otsu’s method [226].
Finally, to avoid spurious transitions, a hysteresis post-processing was implemented
in which a change of state is validated only if it is confirmed by the following two
points of the sequence. The segmentation process is illustrated in Fig. 4.13-left for
two of the audio tracks.

The performance error attained by the three classifier schemes for each audio
track, computed as the percentage of bars in which annotation and classification
are different, is presented in Fig. 4.13-right.

4.5 Discussion and conclusions
This chapter introduced the audio features used along the thesis, following a typical
approach based on the spectral flux, which is well-suited for dealing with the
percussive events of candombe drumming. Besides, a sub-band analysis which
provides a rough separation of the rhythmic patterns by exploiting their different
registers was described. Moreover, a representation in the form of a map of features
was proposed to study the differences and similarities of the rhythmic patterns, as
well as their evolution throughout a performance.

Then, the features were assessed when applied to the onset detection and
classification of candombe drum sound events. They show to be effective for onset
detection, though the optimal configuration may depend on the particular type of
drum at hand and of the problem addressed. An approach for predominant drum
recognition in audio signals was described, based on modelling the same spectral
flux features used for onset detection. The reported experiments yielded promising
results, even for the 1-NN classifier of centroid prototypes. To this regard, the
Pearson correlation measure—which captures the similarity in shape between two
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Figure 4.13: Detection of clave pattern for two repique tracks of the same performance (left)
and classification error for each track of the dataset (right). For each waveform plot: in the
upper part, the proportion of madera onsets detected within each bar is depicted along with
the Otsu threshold; in the lower part, vertical lines indicate the labelled bars, while horizontal
thick lines show classification and ground-truth labels.

spectral profiles—plays an essential role, which should be further assessed in our
future work.

Automatically detecting clave patterns from audio recordings was also tackled
in this chapter and can be a valuable tool for studying performance in musicological
research. For instance, the interaction of two repique drums playing together is
clearly visible in Fig. 4.13. Sections in which a performer plays the clave pattern
show an almost perfect anti-symmetry between the two tracks. Besides, there exist
several variations of the clave pattern that deserve a thorough study, as shown in
Section 5.2. To do that, the automatic detection of clave sections in a recording
allows for dealing with large audio collections. In addition, clave pattern serves as
a mean of temporal synchronization and could be exploited by automatic rhythm
analysis algorithms for beat and downbeat tracking.
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Chapter 5

Analysis of rhythmic patterns

This chapter is based on work originally reported in [254], [159], [160] and [251].
The description herein reproduces some passages of the papers and includes modi-
fications and additions in order to put the work in the context of this dissertation.

5.1 Introduction
There is a broad agreement on the importance of rhythmic patterns as structural
elements in music [193]. From Western Africa traditions to European folk dances,
repetitive rhythmic patterns are at the core of the rhythmic/metrical structure.
The study of rhythm has a long tradition in music theory and musicology. Its
structure is often regarded as a hierarchy of different levels, which is inferred by
the listener through a complex cognitive process [181].

In recent decades, empirical music studies have applied computational ap-
proaches to deal with symbolic music, using software tools such as the Humdrum
Toolkit [146] and music21 [79]. At the same time, research in music informa-
tion retrieval (MIR) has undertaken the development of techniques for extracting
musically meaningful content information from the automatic analysis of data col-
lections, such as audio recordings or symbolic music. In this context, there is a lot
of work on the characterization of repetitive patterns to address topics like music
structure and similarity [35]. Part of this research deals specifically with rhythmic
patterns. For instance, bar-length drum patterns computed from symbolic mu-
sic have been used for studying musical rhythm by the application of statistical
methods from natural language processing [200]. In some other works, rhythmic
patterns are automatically extracted from the audio signal. For example, bar-
length rhythmic patterns computed from the energy evolution of the audio signal
have been applied to the characterization of music and genre classification [95].
Recently, the explicit modelling of rhythmic patterns has been proposed as a way
to improve upon existing beat-tracking algorithms, which typically fail on deal-
ing with syncopated or polyrhythmic music [174]. Those rhythmic patterns, that
describe the distribution of note onsets within a predefined time interval, can be
learned from audio signals, thus enabling the model to adapt to any kind of music.
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The analysis of micro–rhythmic aspects of music has received an increasing
amount of attention in recent years, and has developed a more solid theoretical
framework [44, 45, 144]. Micro–timing involves small–scale temporal deviations of
events in the musical surface with respect to an underlying regular metrical grid.
The systematic use of these deviations can be of structural importance in the rhyth-
mic and stylistic configuration of some genres. In some cases, these deviations take
the form of tempo variations like rubato, accelerando or ritardando; this is common
practice in traditional Western art music from Baroque to Romanticism [144,145].
In other contexts, however, micro–timing is more appropriately represented by the
time–shifting of events with respect to the steady beats of a constant tempo, e.g.
notes inégales in Baroque, or “swing” eighth–notes in Jazz [38, 63, 92, 209]. This
practice is an important characteristic of many genres of contemporary popular
music and in some traditional musics of the Afro–Atlantic culture [82,112,149,216].
It has also been argued that in some cases micro–timing could be better understood
when integrated into the metrical framework by considering non–isochronous beat
subdivisions [239].

In this chapter some techniques are proposed for the detailed analysis of the
rhythmic patterns of candombe drumming from audio recordings. As noted in
Section 2.3.2, each type of drum has a distinctive rhythmic pattern and a timeline
pattern, called madera or clave, is shared by all drums. Some of these rhythmic
patterns exhibit different variations and possible ornamentations. This is the case
of the piano drum, whose rhythmic patterns are considered to be stylistic markers.
Similarly, the clave pattern in candombe allows for several different types and
variants. On the other hand, some of the patterns of the rhythm show virtually no
change. This is the case of the chico drum, which plays an ostinato of sixteenth
notes throughout the whole performance. However, it has been suggested recently
that this pattern exhibits characteristic micro-temporal deviations [112], which
deserve a thorough study. Likewise, it has been noted that the repique’s primary
pattern shows a deviation with respect to the four pulses of the beat [157].

Therefore, a set of tools is proposed for the study of rhythmic patterns that
span over the four-beat cycle, with the aim of investigating its different types and
forms. An interactive software is implemented, to allow for the analysis of the
rhythmic patterns in a given recording, and reveals different aspects of the perfor-
mance. First, a set of experiments is presented which focus on the analysis of the
piano drum from recordings of ensemble performances. A data-driven approach,
applied to annotated audio signals, yields characteristic patterns of the instrument
and allows the study of differences and similarities among performance styles. In
turn, the results of the piano pattern analysis presented herein are useful to in-
form the proposed scheme for supervised rhythmic/metrical tracking described in
Chapter 6. Then, the same techniques are applied to the rhythm cycles where the
clave pattern is played in a given recording. The analysis shows the different clave
pattern variants used by a single player throughout a performance and how they
are alternated. After that, all the rhythm cycles collected from a dataset of record-
ings are aggregated, and the different ways in which the clave pattern is played are
studied. Additionally, other types of experiments are proposed in order to assess
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the exact nature of the micro-temporal deviations found in the rhythmic cells of
the chico and repique patterns. The analysis of several recordings by renowned
players reveals the systematic and consistent use of micro–temporal deviations,
suggesting that micro–timing is a structural component of candombe rhythm.

5.2 Rhythmic pattern analysis
This section focuses on the analysis of rhythmic patterns that span over the whole
rhythm cycle. Firstly, the analysis methods applied and the software tools imple-
mented are described. Then, some experiments that deal with the piano drum
and clave patterns are presented.

5.2.1 Analysis methods
Feature extraction

The audio recording is processed to extract the spectral features described in
Section 4.2, as summarized in the following. The STFT of the audio signal is com-
puted in sequential 40-ms duration frames in hops of 10 ms, weighted by a Hann
window, and then mapped to the Mel-scale using 160 bands. No logarithmic mag-
nitude compression is applied. The resulting sequences are time-differentiated (via
first-order difference) and half-wave rectified. A sub-band analysis is performed
to focus on the corresponding frequency bands of the pattern of interest. In par-
ticular, the low-frequency bands up to approximately 200 Hz are summed for the
analysis of the piano drum, while the high-frequency bands from approximately
1000 to 1800 Hz are summed for the study of the clave pattern. Then, by using the
beat/downbeat annotations of the recording, the features are normalized by the
8-norm within a local window of half a rhythm cycle, time-quantized to a grid of
tatum pulses, and grouped into cycle-length vectors. Hence, the performance can
be represented as a map of cycle-length rhythmic patterns, as shown in Figure 5.1.

Unsupervised clustering

Cycle-length rhythmic patterns are unsupervisedly clustered to aid the analysis
of their differences and similarities. Different techniques can be applied for this
task [150]. Among them, the classical K-means method and spectral clustering
were selected. The K-means method is an iterative algorithm which aims to par-
tition the data patterns so as to minimize the within-cluster sum of the distances
between patterns and their mean. It starts with a randomly selected set of clus-
ter centroids and partitions the data patterns by assigning each one to its closest
centroid. Then, new centroids are computed as the mean of the patterns within
each cluster and the data is partitioned again. The process is repeated until the
pattern-to-cluster assignments no longer change. The obtained centroids serve as
prototypes of the clusters. The main drawback of the method is that it can not
handle non-convex clusters properly.
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Conversely, spectral clustering is useful when the clusters are non-convex or
are not suitably described by a measure of centre and spread. The method does a
low-dimension embedding of the patterns, given by the Laplacian of their similarity
graph, followed by a K-means clustering in the low dimensional space [292]. Build-
ing the similarity graph is not a trivial task and is a key factor in spectral clustering
performance. Different alternatives exist for the type of graph, such as k-nearest
neighbour, ε-neighbourhood or fully connected graphs, which behave rather differ-
ently. Unfortunately, barely any theoretical results are known to guide this choice
and to select graph parameters [292]. A general criteria is that the resulting graph
should be fully connected or at least should contain significantly fewer connected
components than the clusters we want to detect. Otherwise, the algorithm will
trivially return connected components as clusters. In the experiments conducted
a k-nearest neighbour graph was adopted.

The number of clusters K has to be specified as an input parameter for both
algorithms. Even if several automatic strategies do exist to address the estimation
of the number of clusters, none of them is without fail, so a manual selection
relying on the visual and aural inspection of the resulting clusters was favoured
when carrying out the experiments. The automatic selection of the number of
clusters (i.e. different rhythmic patterns) in a recording is addressed in Chapter 7
using information theory concepts. With regard to the definition of similarity
between patterns, Euclidean distance and cosine similarity were considered, both
yielding very similar results, probably due to the normalization of feature values.
Therefore, the former is used in the reported experiments.

Both clustering algorithms proved to be effective for the problem at hand, usu-
ally providing equivalent solutions. Thus, considering that, apart from specifying
the number of clusters K, the spectral clustering method requires the selection of
the graph parameters, the K-means algorithm was applied as the default method
in the reported experiments.

Dimensionality reduction and manifold learning
For visualization purposes, the patterns are mapped to a low dimensional space.
There are several approaches for dimensionality reduction [261], among which
multi-dimensional scaling (MDS), isometric mapping (Isomap), locally linear em-
bedding (LLE), and spectral embedding were applied. Given that the main aim of
this processing is visualizing differences and similarities among rhythmic patterns,
MDS and Isomap were preferred, since they are capable of keeping the levels of
similarity among the original patterns after being mapped to the lower dimen-
sional space. In contrast, the two remaining techniques produced less meaningful
representations in the conducted experiments.

Metric MDS is based on computing the low dimensional representation that
most faithfully preserves the pairwise distance between input patterns. The input
to MDS is specified as a matrix of pairwise distance between patterns, from which
a Gram matrix is derived [261]. Then, the solution is obtained from the spectral
decomposition of the Gram matrix. The Isomap method extends MDS by taking
into account the intrinsic geometry of the data manifold through an estimate of the
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Figure 5.1: Clustering analysis of piano patterns in recording of Exp. 4.1. The three-dimension
representation is computed using Isomap. Centroids of clusters are shown at the right. Letters
at the bottom of the map indicate the assigned cluster (cluster a omitted for clarity).

geodesic distance between patterns, which is obtained from a neighbourhood graph.
The estimated geodesic distances are then used as input to the classical MDS
algorithm. For this reason, Isomap is more effective for analysing data structures
that lie in a manifold of the original space, and was the method applied in the
reported experiments. Besides, it allows the projection of new patterns onto the
low-dimensional space derived from the training patterns. The nearest neighbours
of the new patterns in the training data are found, and from them the shortest
geodesic distances to each point in the training data are computed. This was
exploited in the third experiment of Sec. 5.2.2 in order to map new patterns onto
a low dimensional space obtained from training data patterns.

5.2.2 Experiments and results
The above described tools were implemented in an interactive software that allows
the analysis of the existing patterns in a candombe recording. The system loads
an audio file together with its corresponding beat/downbeat labels, and produces
a cycle-length map of rhythmic patterns and a clustering analysis. The dataset of
recordings described in Section 3.3 was used in a set of experiments intended for
the study of piano drum patterns, part of which are reported in the following.
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Analysis of piano drum patterns in a recording
Experiment 5.1 An example of the analysis of the piano drum patterns in a
recording is shown in Fig. 5.1. The recording, a little over 4 minutes long, features
noted and influential piano player Gustavo Oviedo, in a group comprising also a
chico and two repique drums, all of them belonging to the Ansina style. The first
remark about the results is that the obtained clusters match characteristic patterns
of the instrument. In this case, the most frequent pattern is a typical base pattern
(cluster a, green), while the other clusters correspond to an alternate base pattern
(cluster b, yellow), and to two different types of repicado patterns (clusters c and
d, blue and red respectively). The first two patterns of the recording are readily
seen as outliers of cluster d (red) in the low-dimensional representation, marked
with a dashed red line. In these first rhythm cycles the piano drum plays the clave,
so the patterns are meaningless in terms of piano patterns. Fortunately, this sort
of situation can be easily spotted by means of the implemented software, which
allows one to listen to each individual pattern. The map of bar-length patterns also
permits an easy visualisation of important structural aspects of the recording, like
the irregular but well-balanced distribution of base and repicado patterns along
its duration. It also reveals that the alternate base pattern, i.e. cluster b (yellow),
is always followed by a repicado pattern belonging to cluster c (blue).

Fig. 5.2 shows the patterns corresponding to each cluster in symbolic music
notation.1 For the sake of clarity of notation, all the variety of different strokes
and articulations that can appear in the performance of a skilled player has been
reduced to six basic typologies: three with the hand (open, muffled, and finger tips,
indicated with a triangular note head), and three with the stick (open, muffled and
a press roll or buzz, indicated with a trill symbol). The muffled tones are indicated
with a cross. Comparing Fig. 5.2a and b, it can be seen that they begin in a similar
fashion, but in the alternate base pattern the last beat introduces an anacrusis of
the repicado in Fig. 5.2c. Fig. 5.2 also shows variants of the primary base and
repicado patterns, which exhibit differences only in the last beat.

Comparison of piano drum performance styles
In order to compare piano drum performance styles, only the base patterns were
considered. Notwithstanding, it is worth noting that other types of comparison can
be carried out, for instance, by also including repicado patterns and by considering
their temporal evolution. First of all, the clustering analysis of a recording was
conducted as described above and only the patterns within the largest cluster
were selected for further processing. This is based on the hypothesis that the base
pattern is performed most of the time. Anyway, the selected cluster was aurally
inspected using the implemented software to assess whether it was representative
enough. This is an interactive process that may involve choosing different values
for the number of clusters (parameter K), until an appropriate configuration is
selected. Then, base patterns are grouped and classified into separate classes that
tend to match different performance styles, as shown in the following experiments.

1Music notation of these patterns is based on the one provided by Luis Jure in [254].
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average primary form pattern variants

Figure 5.2: Left column shows the patterns in their average primary form: a) primary base
pattern (green); b) alternate base pattern, with the repicado beginning on the fourth beat
(yellow); c) main repicado pattern (blue); d) alternate repicado pattern (red). Right column
shows variants of the primary base and repicado patterns, which differ only in the last beat.

Experiment 5.2 In the first experiment a set of four recordings was considered,
containing performances by different groups of players of diverse styles. The first
recording is from the style of the Cordón neighbourhood and is played by Rodolfo
“Pelado” Rodŕıguez, while the second one is from the virtuoso piano player Ed-
uardo “Malumba” Giménez, who belongs to the Ansina tradition. The remainder
two recordings are both from a third style, namely Cuareim, and performers are
Fernando “Lobo” Nuñez and Luis “Zorro” Pereira.

The similarity matrix of patterns sorted by performer is depicted in Fig. 5.3-
left. It has a block-diagonal shape which reveals the similarity between patterns of
the same performer. Following the order in which the recordings were introduced,
the number of base patterns in each of them is 78, 58, 81 and 72 respectively, and
players are labelled as Z, Y, X and W. It can also be seen that the patterns of
the last two players tend to be more similar, which is probably related to their
common traditional style. These remarks are also consistent with a hierarchical
cluster analysis using Ward’s linkage method [162], which is shown in the top of the
same figure. Despite their similarities, the patterns of each performer are clearly
separable in a two-dimensional representation computed using the Isomap method,
as shown in Figure 5.3-right, where decision boundaries of a k-nearest-neighbour
classifier are represented. It is important to notice that the decision boundaries
are not much sensitive to the number of neighbours k chosen for classification.

Experiment 5.3 The results of the previous experiment suggest that the base
piano patterns not only reveal performance styles in a broad sense but are somehow
distinct for each different performer. Therefore, in the second experiment this was
further explored by considering two different recordings of each performer, in order
to assess to what extent the patterns in one recording resembled the patterns in the
other. The recordings involve four different performers, namely Eduardo “Cacho”
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Figure 5.3: Results for Exp. 4.2. Left: Similarity matrix of the piano base patterns sorted
by performer (bottom) and dendrogram of the hierarchical clustering analysis (top). Right:
Comparison of piano drum patterns for different players in a two-dimensional space computed
using Isomap. Decision boundaries for a k-nearest-neighbour classifier are depicted (k=7).

Giménez and Gustavo Oviedo from Ansina, and Waldemar “Cachila” Silva and
Juan Silva from Cuareim.

Fig. 5.4 shows the similarity matrix for the patterns in this dataset. The per-
formers are labelled in the above order from A to D, and the number of patterns
in the corresponding pairs of recordings are 150/133, 85/93, 164/140 and 185/188
respectively. As in the previous experiment, the block-diagonal shape of the simi-
larity matrix is also visible, but in addition a secondary diagonal can be discerned,
which discloses the similarity of patterns of the same performer in a different
recording. This was further evaluated by building a k-nearest-neighbour scheme
with the patterns in one recording of each performer as the train set, and then
classifying the patterns in the remaining audio files as the test set. Additionally,
the same procedure was applied to the patterns mapped to a three-dimensional
space using the Isomap method. The obtained results, which are presented in Ta-
ble 5.1, show that classification accuracy is far beyond random choice rate (25%),
even in the three-dimensional space. This seems to emphasize the ability of base
patterns of the piano drum to describe personal styles. It is interesting to note
that the highest confusion rate takes place between the last two players, which not
only share the same traditional style but are also brothers.

Analysis of clave patterns

The techniques were also applied to all the ensemble performances from the dataset
described in Section 3.4 so as to analyse the characteristics of the clave pattern, and
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Figure 5.4: Similarity matrix for the two recording sets of Exp. 4.3. A secondary diagonal can
be discerned, which discloses the similarity of patterns of the same performer in different files.

original dimension, 16 lower dimension, 3
A B C D A B C D

A 126 1 3 3 116 2 9 6
B 2 71 12 8 2 69 13 9
C 7 6 106 21 8 11 87 34
D 7 3 35 143 8 13 55 112

% 94.7 76.3 75.7 76.1 87.2 74.2 62.1 59.6

Table 5.1: Confusion matrix and classification performance for a k-nearest-neighbour classifier
(k=7), in the original space and in a three-dimension mapping computed using Isomap.

ascertain how it is integrated in the rhythm. To do that, the separate audio tracks
of the repique drums were considered. This is because, after the introduction to the
rhythm—in which all drums play the clave pattern—, it is only the repique drum
that plays madera in between phrases. The rhythm cycles in a given recording
where the clave pattern is played can be faithfully identified using automatic onset
detection and sound classification based on spectral timbre features, as described in
Section 4.4.4. Yet, the experiments reported herein relied on manual annotation, to
avoid any spurious result due to automatic classification errors. The analysis of an
audio track provides information on the different patterns used by a single player
and how they are alternated throughout the performance. The first experiment is
an example of this type of analysis. In the second experiment, all clave rhythm
cycles collected from the dataset were clustered according to their similarity. Each
group represents a different way of playing the clave, which were analysed and
compared to the ones reported in the musicological literature.
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Figure 5.5: Clustering analysis of clave patterns in recording of Exp. 4.4. The representation
in three dimensions is computed using Isomap. Centroids of clusters are shown at the right.

Analysis of clave patterns in a recording

Experiment 5.4 An example of the analysis of the clave patterns in a recording
of the dataset is shown in Fig. 5.5. The recording is about 3 minutes long and
features an ensemble of four drums. The audio track analysed corresponds to a
repique drum played by Sergio Ortuño. The ensemble also includes a chico, a
piano and another repique drum. Following the introduction to the rhythm, in
which all the performers play the clave pattern, the two repique drums take turns
to improvise while the other plays madera. This is actually the same recording of
Fig. 4.13, where the interaction between the repique drums is clearly visible.

With regard to the results, the first remark is that the player made use of
three different kinds of clave patterns during the performance—referred to as a, c
and d’, to be consistent with the notation to be used in Exp. 5.5—whose temporal
location tends to be organized into sections of the same type. The distinction
between the pattern types is consistently disclosed within the second and third
beats, in particular through the differences at subdivisions 2.2–2.3 and 3.1–3.3.
The performance begins with pattern a, which is essentially the five–note synco-
pated pattern already introduced in Fig. 2.12 as a prototype of the clave, and also
corresponds to the Cuban 3:2 son clave. At present, this is arguably the most
common and widespread clave pattern of candombe rhythm [88, 106, 124, 158]. It
was the pattern played most frequently at the beginning of the performance in the
recordings analysed (11 out of 14 started with this pattern, the others beginning
with pattern d). Still, it only represents about one fifth of the total number of the
clave rhythm cycles in the dataset, as shown in the following experiment.

86
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Analysis of clave patterns in the dataset

Experiment 5.5 A total of 423 rhythm cycles identified as clave patterns were
gathered from the different recordings of the dataset. A cluster analysis was carried
out with the whole set of clave patterns, whose results are shown in Fig. 5.6. In the
three-dimensional representation it can be readily seen that there are essentially
four main groups, two of which can be subdivided into two variations—denoted
as a, b, b’, c, d and d’. All the collected patterns, sorted by cluster, are depicted
in the map at the bottom of Fig. 5.6, and the percentage of each type is also
indicated. The centroids of the clusters are illustrated as well. The patterns in
their average primary form are represented in music notation in Fig. 5.7.2
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Figure 5.6: Clustering analysis of the clave patterns in the dataset. The three-dimension
representation is computed using Isomap. Centroids of clusters are shown at the right.

The inspection of the different representations of the patterns allows for an
analysis of their similarities and differences. Pattern a, already introduced, is
described in the musicological literature as the most usual or common pattern,
and the one always used to clap along to candombe music [106,124,158]. It divides
the rhythm cycle irregularly with only two strokes out of five coinciding with a
beat. It is worth noting that the articulation of the last subdivision, i.e. 4.4,
is an ornamental device that can actually appear or not in any clave pattern,

2Music notation of these patterns is based on the one provided by Luis Jure in [158].
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functioning as an anacrusis of the downbeat, rather than a fundamental stroke. If
the ornamentation at 4.4 is not taken into account, nor the weak embellishments
such as the ones in patterns c and d, a representation of the skeleton of each clave
pattern can be built. This is shown in Fig. 5.8 using a circular rendering of the
rhythm cycle, in which consecutive note locations are connected to form a convex
polygon. Such a representation enhances the visualization of certain traits and has
been used to analyse rhythmic structures [284,285].

Figure 5.7: The clave patterns derived from the dataset in their average primary form repre-
sented in music notation. Arrows indicate the three points in which all clave patterns coincide.

Turning now to pattern b, it is a clave pattern that has also been reported in
the musicological literature [106,158], and is sometimes linked to the Ansina style.
Compared to pattern a, it corresponds to displacing the stroke at subdivision 3.3
to 3.2, as indicated with an arrow in Fig. 5.8-a. The swap of this stroke contributes
to the evenness of the pattern, because it results into four out of five inter-onset
intervals of the same length. Nevertheless, the pattern still articulates only two
beats. Actually, among the five stroke patterns it is a maximally-even set, i.e. it
has its elements as evenly spaced as possible [285]. And if the ornamentation at
4.4 is added, it is also a maximally-even set among the six stroke patterns. Note
that b’ is a saturated version of pattern b, that softly articulates every subdivision
before a stroke of the latter. As a whole, pattern b accounts for almost half of
the clave rhythm cycles in the dataset. The fact that the group of performers
featuring in the recordings belong to the Ansina tradition reinforces the idea that
the pattern is somehow typical of the style.

Then, pattern c can be regarded as the kernel of a different type of clave
pattern. Compared to pattern b, it involves two stroke swaps, i.e. displacing 2.3
to 2.2 and 3.2 to 3.1, as indicated with arrows in Fig. 5.8-b. Hence, the resulting
pattern is less syncopated, articulating three consecutive beats. Note that pattern
c can be ornamented with a soft articulation before each stroke coinciding with a
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beat, a device that is also reported in the literature [106]. Finally, pattern d makes
use of the same strokes as the previous pattern but reintroduces an articulation in
subdivision 3.3, as in clave pattern a, which is depicted with an arrow in Fig. 5.8-c.
Consequently, the resulting pattern d has six definite strokes, and also allows for
some embellishments through soft articulations at 1.3 and 2.4. The variant of this
pattern, denoted as d’, differs in the insertion of a distinctive stroke at 4.2, and,
albeit not so relevant, a tendency to articulate subdivision 4.4. It is noteworthy
the resemblance of this saturated 10-stroke pattern d’ to the Afro-Cuban cáscara
pattern [39]. The patterns c, d, and its variants are sometimes referred to as a
‘traditional’ or ‘old’ clave patterns [88], based on the idea that they were more
common in the past. Both patterns taken together account for about one third of
the clave rhythm cycles in the dataset. For completeness, one may note that two
simple operations allow to transform back from pattern d to pattern a, namely
the swap of subdivision 2.2 to 2.3 and the deletion of the stroke at 3.1. This could
be formalized by defining a measure of the minimum number of basic operations
needed to transform one pattern into the other, as in [285].
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Figure 5.8: Rhythmic patterns in polar notation.

It is worth noting that the cluster analysis shows an outlier, which can be
clearly identified in the centre of the three-dimensional representation of Fig. 5.6—
marked with a dashed red line to ease the visualization—and is assigned to pattern
a cluster. The inspection of this pattern reveals that it has a fundamental differ-
ence compared to pattern a, given that it displaces the articulation at subdivision
2.3 to 2.4, resulting in a rumba—instead of a son—clave pattern. Actually, this is
also a typical candombe clave pattern reported in the literature [106, 158], which
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has already appeared in the analysis of a field recording shown in Fig.4.4. If a larger
set of recordings had been analysed, this pattern would probably have emerged
as a well-defined cluster by itself. Including this last case, the analysis yielded
virtually all the candombe clave patterns reported in the literature [106,158].3

The representation of the patterns as convex polygons illustrated in Fig. 5.8
uncovers certain properties useful for geometric analysis and comparison [284]. For
instance, an isoceles triangle indicates two equal consecutive time intervals between
strokes. From this perspective, it is immediately obvious that patterns a and b
share the same evenness within the first two beats, given by the articulations at
1.1, 1.4 and 2.3. Likewise, the three isoceles triangles in pattern b give account of
its maximally evenness. On the other hand, an axis of mirror symmetry indicates
that there exists a position from which the pattern sounds the same when played
forward or backwards [284]. In this case, patterns a, b and c exhibit such an axis of
mirror symmetry—depicted with a red dashed line in Fig. 5.8—that reveals they
are weak palindromes, since the symmetry is not about the downbeat.

More importantly, the representation also discloses that the triangle defined
by subdivisions 1.1, 1.4 and 4.1 is a trait in common among all the clave patterns.
Indeed, the several possible variants of the clave pattern all coincide in the these
three points, marked with arrows in Fig. 5.7 [158]. Moreover, the different base
patterns of the piano drum consistently articulate them; see for instance Fig. 5.2 or
the survey of patterns reported in [106]. For this reason, it has been suggested that
these three points constitute the pillars of the candombe rhythmic structure [158].
The first one coincides with the first beat of the bar and is the primary metric
accent. As such, it is the point of resolution and conclusion of the rhythm. The
other two points are the structural accents of the musical phrase. The one that
precedes the second beat of the bar, is a stress accent and represents a “bottom
up” rhythmic energy load, while the second one, coinciding with the fourth beat
of the measure, is an unload accent. The location of these two accents, and the
fact that none of them are coincident with the metrical accent, are probably the
most distinctive features of candombe rhythm [158].

5.3 Micro–rhythmic analysis
This section is devoted to measuring and analysing the micro–rhythmical proper-
ties of the drumming patterns in candombe. Unlike the other two drums, the chico
drum is characterized by a single pattern that must be repeated during the whole
performance, establishing the lowest level of the metrical structure. The repique
drum, on the other hand, is the drum allowed the highest level of improvisation.
Its primary pattern (repique básico, see Fig. 2.13) may be varied and ornamented
in many ways, and alternated with other repique or clave patterns [110, 158]. It
has been noted that in actual performance, the primary pattern presents a per-

3In [106], Ferreira includes an ornamented variant of pattern a that softly articulates
subdivisions 2.2 and 3.2. Apart from that, in [158], Jure introduces another version of the
rumba pattern that has an additional stroke at subdivision 3.1.
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ceptible deviation with respect to the four pulses of the beat, towards a triplet
feeling [157]. And although the chico drum is presented as the foundation upon
which the whole metrical structure is built, it has been suggested recently that its
pattern presents a contraction of the inter–onset intervals [112]. The aim of the
methods and experiments proposed in this section is to assess the exact nature of
such deviations.

5.3.1 Analysis methods and dataset
Dataset

The multi–track recordings of the dataset described in Section 3.4 were used for the
reported experiments—in particular, the 12 ensemble recordings corresponding to
groups of three and four drums, i.e. 9 and 3 performances respectively. The total
time of the performances was over 35 minutes and the tempos varied between 100
and 140 bpm, with a strong prevalence of values around 130 bpm. Annotations of
the location of beats and downbeats for all recordings are available as part of the
dataset for beat/downbeat tracking described in Section 3.3.

Onset detection

Automatic detection of onsets was carried out on the separate audio tracks using
the methods described in Section 4.3. The resulting events were manually checked
and adjusted when necessary, yielding a total of 37062 onsets. A window length of
20 ms and a hop size of 5 ms were used for the STFT computation. This provided
a resolution of the detection function that proved to be appropriate for the micro–
rhythmic analysis. Some tests were conducted comparing the automatic detected
events to the location of their physical onset, which was manually determined by
inspecting the audio waveform. For instance, in a piano drum track with 396
onsets, less than 5% of them showed an absolute difference to the physical onset
greater than 5 ms, and 80% of the differences were below 3 ms. Even at a high
tempo value of 140 bpm, a resolution of 5 ms represents less than 5% of the inter–
onset interval per metric subdivision, which is approximately 107 ms.

Timing data extraction and analysis

Because of the different tempo of each recording, as well as the variations of the
beat pace within a given performance, the timing data can not be analysed as
absolute duration values in seconds or milliseconds. Provided that the beginning
of each rhythm cycle is identified in some way, a reasonable option is to consider
the four-beat rhythm cycle as the reference time interval in order to normalize the
timing data. Besides, the location of each onset can be expressed as a percentage
of the four-beat rhythm cycle, therefore making it comparable across different
recordings and distinct sections of a certain performance.

Then, each onset can be grouped to the closest subdivision within the rhythm
cycle. The grid of subdivisions is assumed to be isochronous at this stage, i.e. an
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equidistant partitioning of the rhythm cycle in four beats, each beat in four sub-
divisions. Yet, once the onsets are grouped, the mean and the standard deviation
of each group can be computed. This provides an estimate of the actual location
of the events of the rhythmic pattern for the different metric positions, as well as
their amount of dispersion.

It remains to be determined how to find the location of the beginning of each
rhythm cycle or downbeat. A straightforward solution is to have the downbeats
of the recordings manually annotated by an expert, for instance by tapping to the
piece, as is the case for the dataset under study. This, however, may introduce an
external subjective bias that could be troublesome when attempting to precisely
measure micro–rhythmic deviations.

An alternative method, used in some music entrainment studies [240], is to
estimate the location of the downbeat from the onsets themselves. It is based on
identifying an ostinato or timeline pattern that articulates the downbeat through-
out the whole piece. In this way, a preliminary estimate of the beginning of each
rhythm cycle is obtained. After that, the onsets articulated by all the instruments
within a tight window around the beginning of each rhythm cycle are considered,
and their locations are averaged to provide an estimate of the downbeat, which
is hopefully not biased to any particular instrument. Since the normalization is
accomplished by using the same time reference for all instruments, it allows the
comparison of the location of the onsets among different ensemble parts.

Difficulties arise, however, when an attempt is made to implement this method
for candombe drumming, since choosing the reference for the downbeat is far from
trivial and can be rather problematic. Ideally, it should be the timeline proper,
i.e. the clave or madera pattern, but candombe drumming is atypical in that the
timeline pattern is not always present. Then, there is the piano drum which has a
timeline-like function and its base patterns articulate the downbeat. Nevertheless,
it also exhibits several variations and repicado patterns which do not assure an
articulation at the downbeat for every rhythm cycle. Finally, the chico drum is the
tempo/pulse reference for the other instruments, but its most common pattern does
not articulate the downbeat (or any other beat, see Fig. 2.12). If micro–temporal
deviations of the chico drum pattern do actually exist, trying to interpolate the
downbeat from the other strokes might be prone to error.

Yet, the preliminary estimate of the beginning of each rhythm cycle can be
obtained from the downbeat annotations. The problem arises when trying to
estimate the downbeat from the average of the onsets at the beginning of the
rhythm cycle, since it may be the case that none of the drums articulate an onsets
there. But there is an alternative chico drum pattern that adds a soft stick stroke
at each beat, thus articulating all subdivisions. Therefore, only the performances
in which the chico drum plays the alternative pattern are considered for testing the
method, since it guarantees at least one onset at the downbeat. Fortunately, there
are 6 recordings of this kind in the dataset, exhibiting the alternative chico pattern
throughout the whole performance. The remaining 6 recordings, in which the chico
plays the standard pattern, are analysed using only the manual annotations as time
reference, and the results produced by both methods are compared.
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5.3.2 Experiments and results
Two different types of experiments were carried out to study the micro–rhythmic
properties of candombe drumming. The first one relies on the manual annotations
for normalizing the timing data. In the second one, the location of the downbeat
is determined by averaging the onsets lying at the beginning of the rhythm cycle.

Experiment 5.6 The focus of this experiment is to study the micro–rhythmic
characteristics of the standard chico pattern and the repique primary pattern (as
depicted in Fig. 2.13), i.e. the group of ‘headless’ sixteenth notes of the former and
the sixteenth–eighth–sixteenth note motif of the latter. Six takes were selected
from the dataset, in which the standard chico pattern is played. A few introductory
rhythm cycles at the beginning of the performances were discarded, that included
the clave pattern played by all the drums and occasionally some alternative chico
patterns. The selected takes feature the three performers that played both chico
and repique during the recording session. The automatic onset detection provided
a total of approximately 5000 chico onsets for the analysis. In the repique tracks,
only the segments with the primary repique pattern were analysed, resulting in
approximately 1500 onsets. The patterns under analysis repeat themselves in each
of the four beats of the rhythmic cycle. Hence, the normalization of the timing
data was done using the manually annotated beats. Then, the onsets were assigned
to its closest subdivision, considering a perfect division in four of the beat. Finally,
mean and standard deviation of the onsets were computed for each group. The
analyses show some clear tendencies appearing consistently in all cases, although
the exact amounts of deviation are different for each take, even of the same player.
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Figure 5.9: Analysis of chico and repique tracks of the same recording, beats plotted upwards.
Mean values of the onsets at each subdivision are given as a percentage of the beat duration.
The Pearson correlation coefficient (p < 0.001) is provided for pairs of consecutive onsets.
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In Fig. 5.9 the results of the analysis of one of the recordings are depicted,
showing the typical behaviours of chico and repique patterns. The last onset of
the repique primary pattern is displaced as expected, and is very close to a ternary
division of the beat. The second onset keeps its place around the second pulse, but
has a higher variance. And despite the prevalent descriptions of the chico drum
as strictly establishing the pulse of the lowest metrical level, its pattern presents a
significant temporal contraction: the first onset (the hand stroke) coincides quite
precisely with the second pulse, but the two remaining onsets appear clearly ahead
of the divisions in four of the beat. Small quantitative differences aside, the same
behaviour of both drums was observed in all the analysed recordings.

Experiment 5.7 This experiment examines the micro–rhythm properties of all
the ensemble parts of a complete recording. All normalizations of the timing data
are done only at the four-beat cycle level, not at each beat independently as in
the previous experiment. Six takes of the dataset are selected for this experiment,
in which the chico pattern softly articulates the beats, thus providing an onset at
the downbeat. The total number of detected onsets in the recordings is 19054, of
which 8428 correspond to the chico, 5773 to the repique and 4853 to the piano. An
estimate of the downbeats, obtained by averaging all the onsets at the beginning
of each rhythm cycle, is used as time reference for the normalization. The steps
used for processing the timing data are detailed in the following.

1. The beginning of each rhythm cycle is obtained from the annotations

2. All onsets are normalized to relative positions between adjacent cycle starts

3. The onsets are assigned to its closest subdivisions within an isochronous grid

4. Onsets of all drums at first subdivision are averaged to estimate downbeats

5. All onsets are normalized using the downbeat estimates as reference

6. The onsets are assigned to its closest subdivisions within an isochronous grid

Once the onsets are assigned to subdivisions, their mean and standard deviation
values are computed. It is worth noting that, as expected, the standard deviation
values obtained with the downbeat estimates are smaller compared to that of the
preliminary alignment based on annotations.4

The results of this process are provided in Fig. 5.10 for one of the recordings of
the dataset.5 Despite the highly structured form in which the onsets are organized,
some of them may lie in ambiguous locations with regards to the metric grid.
These onsets usually arise from embellishments which do not conform to the stable

4It was in order to check this that all the onsets are assigned to subdivisions based on the
preliminary alignment, instead of only identifying those corresponding to the downbeat.

5The piano part in this recording is played with virtuosity, filling the rhythmic patterns
with soft strokes in between the accented ones. Although other piano drum renditions are
typically less saturated, this recording is selected because it better reveals the underlying
subdivision of the pulse intended by the performer and allows for a richer discussion.
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pattens of interest. For this reason, they are filtered out, by discarding all the
events outside a window of three standard deviations to each side of the mean.
In Fig. 5.10, the filtered events are marked with crosses. The mean and standard
deviation values for each group are computed again after the filtering process.
Anyway, the small number of such events that actually come out of the process
(less than 1.5%) indicate that they have an almost negligible effect in the analysis.
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Figure 5.10: Analysis of all the ensemble parts of a complete recording. The onsets are cycle-
length normalized using the estimated downbeats. The rhythm cycles are plotted upwards in
increasing order. Mean values of the onsets are given as a percentage of the beat duration.

A number of observations that are worth noting emerge from the analysis of
this recording. Firstly, considering each of the three drums in turn, it can be
noticed that all the beats show a similar behaviour, with differences in the mean
values of its four subdivisions of about only one percent of the beat duration.
This suggests that in terms of the micro–timing all the beats are alike for the
different ensemble parts. Secondly, comparing the timing of the different drums,
they considerably adhere to a similar pattern. The onsets at the beats line up
quite precisely at an equidistant metrical grid. Conversely, the onsets at the third
and fourth subdivisions noticeably depart from a perfect partition in four of the
beat, the deviations being pretty consistent across the different ensemble parts.
The only remarkable difference is that of the second pulse of each beat. While
the chico and repique drums adhere quite strictly to an equidistant subdivision,
the onsets of the piano drum lie a little bit ahead. Overall, these results are
qualitatively in agreement with those of the other recordings analysed, and those
reported in the first experiment for the chico and repique drums.
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The bottom of Fig. 5.10 shows the aggregated histogram of all onsets of the
different drums in the recording. Disregarding the small discrepancies between the
different ensemble parts, the peaks of the aggregated histogram could be considered
as the corresponding metrical grid positions of the piece.

For the purpose of extending this analysis to the whole dataset, an aggregated
histogram is computed including all the onsets of the six takes selected for this ex-
periment, which is shown in Fig. 5.11. Not surprisingly, the micro–timing pattern
of each beat is remarkably similar. For this reason, the timing data is mapped to
the beat length, assuming an equidistant metrical grid of beats within the rhythm
cycle, and the aggregated histogram is computed again. The results are presented
in Fig. 5.12, along with the aggregated histogram of the chico onsets for the six
takes of the first experiment for comparison. It can be seen that both experiments,
although not strictly comparable, yield very similar micro–timing patterns.
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Figure 5.11: Histogram aggregating the onsets of all drums of the six takes selected for Exp. 5.7.
Mean values of the onsets are given as a percentage of the beat duration.
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Figure 5.12: Left: aggregated histogram of the onsets of all drums of the six takes of Exp. 5.7.
Right: aggregated histogram of the chico onsets of the six takes of Exp. 5.6.

These findings, while preliminary, suggest that candombe rhythm has an isochro-
nous grid of beats, that exhibits an uneven subdivision structure. Within the
beat, the micro-timing follows a short–short–short–long (SSSL) pattern,6 given by
duration proportions of approximately 24:23:23:30; though the exact amounts of
deviation depends on the dataset considered and the analysis method applied.

6Actually, very close to a medium–short–short–long (MSSL) pattern.
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5.4 Discussion and conclusions
In this chapter some methods were proposed for the detailed analysis of the rhyth-
mic patterns of each type of drum found in recorded candombe performances.

An interactive software tool was developed which loads an audio file and a set
of beat/downbeat labels, and produces in return a bar-length map of rhythmic
patterns and a clustering analysis. The usefulness of the proposal was illustrated
through a set of experiments concerning the study of piano drum performances
from audio field recordings. For a given recording, a map of bar-length patterns
permits the inspection of their evolution over time and the visualisation of impor-
tant structural aspects of the performance. Besides, a clustering analysis of the
rhythmic patterns detected in the recording tends to match characteristic patterns
of the instrument. In addition, a comparison of piano drum performance styles was
conducted by considering the patterns of the largest cluster (i.e. base patterns).
Results of the experiments indicate that by applying the proposed methods, pat-
terns tend to be grouped by artist disclosing their personal styles. Moreover, their
similarities reveal common traits of the traditional styles and even family ties.

The methods were also applied to the study of the clave (or madera) patterns
from a dataset of audio recordings. Most of the patterns reported in the literature
arose from the analysis, which also allows for a quantitative assessment of the
number of rhythm cycles of each type and their location within the performance.

In spite of the promising results obtained, the characterization of the rhythm
patterns should be further investigated. The classification of the type of stroke for
each articulated pulse is envisioned as an important improvement of the technique.

A study of the subdivision timing of the rhythmic patterns was accomplished
by using multi-track recordings of candombe drumming performances by renowned
players. The analysis of several recordings revealed the systematic use of micro–
rhythmical deviations in the patterns of the candombe drums, indicating that
micro–timing is a structural component of its rhythm. The behaviour of the repique
primary pattern was more precisely measured, and a behaviour of the chico pat-
tern that does not fit current descriptions was confirmed [112]. The consistent use
of these deviations can be considered as an evidence of the existence of a sort of
“swing” characteristic of candombe, analogous to the idea of swing in Jazz and
other Afro–American music styles [38, 63, 112, 136, 149, 216]. The micro-rhythmic
structure of candombe rhythm was characterised as an isochronous grid of beats,
that exhibit an uneven subdivision following a short-short-short-long (SSSL) pat-
tern.7 Nonetheless, further experiments should be carried out on a wider dataset
including more performers representing the different traditional styles of candombe.

7This micro-timing profile typologically resembles the subdivision structures in some
styles of Afro-Brazilian music, such as maracatu and candomblé [136]. Furthermore, com-
paring several Brazilian styles, the long fourth “upbeat” subdivision (...L) stands out as
an invariant feature [136]. Hence, without denying the differences between the various
rhythms, it may be argued that the long fourth subdivision provides some common aes-
thetic ground across many Afro-Brazilian styles, which potentially includes Afro-Urugayan
candombe. This was suggested by Rainer Polak in personal communication, April 3th 2017.
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Chapter 6

Beat and downbeat tracking

This chapter is based on work originally reported in [219]. The description herein
reproduces some passages of the article and includes modifications and additions
in order to put the work in the context of this dissertation. Besides, a different
observation model introduced into the proposed method improves the reported
results, and some other state–of–the–art beat/downbeat tracking algorithms that
became available after the publication of the paper are added to the comparison.

6.1 Introduction
Meter plays an essential role in our perceptual organization of music. In mod-
ern music theory, metrical structure is described as a regular pattern of points
in time, hierarchically organized in metrical levels of alternating strong and weak
beats [181, 192]. The beats specifically refer to the pulsation of the perceptually
most salient metrical level, which are then further grouped into measures or bars.
The first beat of each measure is called the downbeat. The metrical structure itself
is not present in the audio signal, but is rather inferred by the listener through a
complex cognitive process. Therefore, a computational system for metrical anal-
ysis from audio signals must, explicitly or implicitly, make important cognitive
assumptions. A current cognitive model proposes that, given a temporal distribu-
tion of events, a competent listener infers the appropriate metrical structure by
applying two sets of rules: Metrical Well-Formedness Rules (MWFR), which de-
fine the set of possible metrical structures, and Metrical Preference Rules (MPR),
which model the criteria by which the listener chooses the most stable metrical
structure for a given temporal distribution of events [181]. While not strictly
universal, most of the MWFR apply for a variety of metric musics of different
cultures [280]; MPR, on the other hand, are more subjective and, above all, style-
specific. Hence, a listener not familiar with a certain type of music may not be
able to decode it properly, if, for instance, its conventions differ substantially from
usual tonal metrical structures.

This is why the computational analysis of rhythmic/metrical structure of music
from audio signals remains a difficult task. Most of the proposed algorithms follow
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a bottom-up approach with little prior information about the music under analysis
[93, 99, 166, 220], often including some kind of preference rules—e.g. by aligning
beats with onsets of stronger and/or longer events [181]. Although they perform
reasonably well for a large part of the popular music of Western origin (such
as rock or pop with a steady beat), they usually fail on processing syncopated
or polyrhythmic music, for instance, that of certain Turkish, Indian or African
traditions [275]. Actually, the identification of challenging music styles and the
development of style–specific algorithms for meter analysis and beat–tracking has
been regarded as a promising direction of research to overcome the limitations of
existing techniques based on a supposedly universal model [77,232,267,275].

Consequently, other approaches follow a top–down process guided by high–
level information, such as style–specific characteristics [152, 295]. Among them,
the explicit modelling of rhythmic patterns has recently been proposed as a way
to improve upon existing beat–tracking algorithms by Krebs et al. [174]. This is
based on the Bayesian approach referred to as dynamic bar pointer model, first
proposed by Whiteley et al. [293], and later extended by various authors [172,
174–176, 276, 294]. In general, the model aims at the joint estimation of beats,
downbeats, tempo, meter, and rhythmic patterns, by expressing them as hidden
variables in a Hidden Markov Model (HMM) [244]. The joint inference of all
the rhythm parameters allows to exploit the mutual dependencies between them,
but also increases the computational complexity of the model. For this reason,
an efficient transition model was devised in [175] to reduce the dimension of the
hidden–variables state-space of the HMM. Besides, the use of particle filtering was
also proposed as an efficient inference scheme [176, 276]. In [174], Krebs et al.
effectively applied the rhythmic pattern modelling to a dataset of Ballroom dance
music, and argued that, since the rhythmic patterns are learned directly from data,
the model could be adapted to music of any kind. Then, the observation model
was adapted in [141] to a more diverse collection of music from different cultures
(Makam music from Turkey, Cretan music from Greece, and Carnatic music from
the South of India). Recently, the dynamic Bayesian networks for beat and meter
tracking have been combined with Recurrent Neural Networks (RNN) [51,173] and
Convolutional Neural Networks (CNN) [96,143].

The work presented in this chapter was motivated by the fact that some charac-
teristics of candombe rhythm are challenging for most of the existing rhythm anal-
ysis algorithms. Indeed, when this research work started, we confirmed that none
of the publicly available beat tracking methods were able to deal with candombe
recordings properly. For this reason, in collaboration with Leonardo Nunes—who
was doing research on the Bayesian approach for rhythm analysis [218]—the author
of this thesis work tackled the development of a beat/downbeat tracking algorithm
suitable for candombe drumming. Also departing from [293], the method was de-
veloped almost in parallel to that proposed by Krebs et al. in [174]. Preliminary
results were presented at the CICTeM Congress [253] in 2013, and at the Inter-
national Musical Rhythm Workshop in 2014 [250]. Finally, the work gave rise to
a paper presented at the ISMIR Conference in 2015 [219]. With the publication
of this paper, an annotated dataset of candombe recordings was released, together
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with the first—to the best of our knowledge—publicly available software implemen-
tation of the Bayesian approach for rhythm analysis.1 Other two implementations
of the Bayesian approach were made publicly available shortly after, namely mad-
mom [49] and bayesbeat [175], and are included in the experiments in this chapter.
However, only the latter allows for training the models with annotated recordings,
and thus it was possible to adapt it to candombe rhythm.

In the following, the proposed supervised scheme for rhythmic pattern tracking
is described, which aims at finding the metric structure from an audio signal, in-
cluding the phase of beats and downbeats. Then, in Section 6.3, the performance
of the proposed method is assessed over the dataset of annotated recordings intro-
duced in Section 3.3, considering different experimental set-ups, and comparing it
to that of other available beat and downbeat tracking algorithms. The chapter
ends with discussion and conclusions of the presented work.

6.2 Rhythmic pattern matching
A Bayesian paradigm is adopted in this work in which the rhythmic/meter struc-
ture is explicitly modelled as a latent state inference problem, as in [293]. Given
a sequence of observed data y1:K the goal is to identify the most probable hidden
state trajectory x0:K . An observation model that relates the observations to the
hidden variables has to be defined. Besides, a prior distribution over x0:K have to
be postulated. In this framework the posterior distribution over hidden variables
is given by the Bayes’s theorem:

p(x0:K |y1:K) =
p(y1:K |x0:K) p(x0:K)

p(y1:K)
. (6.1)

For on-line or potentially real-time applications, the inference can be implemented
in a causal form by performing filtering, in which given observations up to the
present time, distributions of the form p(xk|y1:k) are computed. For off-line in-
ference smoothing can be performed, which takes into account future as well as
present and past observations, p(xk|y1:K). This is a retrospective improvement of
estimates, so smoothing distributions can be obtained in terms of the correspond-
ing filtering distributions [293].

In this section, a rhythmic/metric analysis algorithm that matches a given
rhythmic accentuation pattern to an audio signal is described. It tries to find
the time of occurrence of each tatum knowing its expected accentuation inside
the pattern, thus being able to track not only the beat but also other metrical
information. Initially, a tempo estimation algorithm is employed to obtain the
beat period (tempo), assumed to be approximately stable throughout the signal.
Then, the main algorithm is used to find the phase of the accentuation pattern
within the observed signal. Two different observation models are considered, which
differ in the way the likelihood of an accentuation pattern is defined.

1The software implemented is available from github.com/lonnes/RhythmicAnalysis,
and can be applied not only to candombe recordings but to other music styles, by informing
a rhythmic pattern to track as an input parameter.
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6.2.1 Audio feature extraction
For audio feature extraction, the approach based on the spectral flux described in
Section 4.2 is applied, as summarized in the following with the respective anal-
ysis parameter values. First, the Short-Time Fourier Transform of the signal is
computed for sequential frames of 20 ms duration, weighted by a Hann window, in
hops of 10 ms. Then, the STFT is mapped to the Mel–scale using 160 bands. No
logarithm magnitude compression is applied. The resulting sequences are differ-
entiated (via first-order difference) and half-wave rectified.

For tempo estimation, the feature values are summed along all Mel sub-bands,
in order to take into account events from any frequency range.

Since its pattern is the most informative on both tactus beat and downbeat
locations, the rhythmic pattern tracking is tailored towards the piano (i.e. the low–
pitched) drum. Therefore, the accentuation feature used for pattern matching is
obtained by summing the spectral flux along the lowest Mel sub-bands (up to
approximately 200 Hz) only. This function is normalized by the 8-norm of a vector
containing its values along ±4 estimated tatum periods around the current time
frame (i.e. a window length of half a bar). Recall that the resulting feature value
is expected to be close to one if a pulse has been articulated and close to zero
otherwise. In addition, it also carries some information on the type of articulation.
For instance, an accented stroke produces a higher feature value compared to a
muffled one, since in the former case the spectral change is more abrupt.

6.2.2 Tempo Estimation
For tempo estimation, this work adopts a straightforward procedure based on lo-
cating the maximum of a suitably defined similarity function. As proposed in [233],
the basic function is the product between the auto-correlation function and the
Discrete Fourier Transform of the features computed for the whole signal. The
result is weighted by the function described in [202]. The period associated with
the largest value in this weighted similarity function is selected as the tempo of the
signal. After the tempo is obtained, the tatum period used for pattern tracking
can be computed just by dividing the beat period by 4. This tatum period is then
used to define the variables in the pattern tracking algorithm as described in the
next sections.

6.2.3 Variables definition
In order to perform its task, the algorithm employs two discrete random variables.
The first one, called tatum counter, ck, counts how many frames have passed since
the last tatum has been observed at frame k. Assuming an estimated tatum period
of τ frames, then ck ∈ {0, 1, . . . , τ − 1 + σc}, where σc is a parameter that allows
for possible timing inaccuracies in the tatum. The second, called pattern index,
ak, indicates the position inside a given rhythmic pattern at frame k in the range
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{0, 1, . . . ,M − 1}, where M is the length of the rhythmic pattern in tatums.2 The
rhythmic pattern will be expected to define a series of accents or lacks of accent
in the tatums. Time evolution of these two variables will be described in the next
section, where it is assumed that the sampling rate of the feature (typically less
than 100 Hz) is much lower than that of the original signal (usually 44.1 kHz).
The model describes the accentuation feature extracted at frame k as a sample or
observation yk of random variable yk.

A summary of the proposed model for rhythmic pattern tracking is depicted
in Fig. 6.1, where the statistical dependencies among the variables—which are
described in the following two sections—are explicitly shown.

ak�1

yk�1

ak

yk

ck�1 ck

Figure 6.1: Graphical representation of the statistical dependency between random variables
and observations. Rectangles denote continuous variables and circles discrete variables.

6.2.4 State Transition
In this section, the probabilities of each value for the two random variables at frame
k given past frames are described. A first-order Markov model will be assumed for
the joint distribution of the random variables, i.e., the probability of each possible
value of a random variable at frame k depends only on the values assumed by the
variables at the previous frame, k − 1. Using this assumption, the two random
variables will constitute a Hidden Markov Model [214].

The tatum counter variable, as previously mentioned, counts how many frames
have passed since the last tatum. The state ck = 0 is considered the “tatum state”
and indicates that a tatum has occurred at frame k. This random variable is
closely related to the phase state proposed in [91] for beat tracking. Only two
possible transitions from frame k − 1 to frame k are allowed: a transition to the
“tatum state” or an increment in the variable. The transition to the “tatum state”
depends on both the past value of the variable and the (known) tatum period. The
closer the value of the variable is to the tatum period, the more probable is the

2Since bar–length rhythmic patterns are used in the reported experiments, it also in-
dicates the position within the bar at frame k.
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transition to the “tatum state.” Mathematically, it is possible to write

pck(ck|ck−1)=


h[ck−1 − (τ − 1)], if ck=0

1− h[ck−1 − (τ − 1)], if ck=ck−1 + 1

0, otherwise,

(6.2)

where h[.] is a tapering window with h[n] = 0 for |n| > σc that models possible
timing inaccuracies on the tatum, and

∑
n h[n] = 1. Currently, a normalized Hann

window is employed to penalize farther values. The value σc = 2 was set for
the reported experiments, indicating that inaccuracies of up to about 50 ms are
tolerated by the algorithm.3

Since the accentuation pattern is defined in terms of the tatum, its time evo-
lution will be conditioned by the pattern evolution. Assuming that the pattern
indicates the expected accentuation of the next tatum, the variable should only
change value when a “tatum state” has been observed, indicating that a different
accentuation should be employed by the observation model (described in the next
section). Hence, mathematically

pak(ak|ck−1, ak−1) =


1, if (ak = ak−1 ⊕ 1) ∧ (ck−1 = 0)

1, if (ak = ak−1) ∧ (ck−1 6= 0)

0, otherwise,

(6.3)

where ∧ is the logical AND, ⊕ denotes a modulo-M summation, and M is the
length of the accentuation pattern. As can be gathered, given the previous tatum
counter value, the pattern index becomes deterministic, with its next value com-
pletely determined by its value at the previous frame and the value of the tatum
counter. The transitions for this variable are inspired on the ones used in the fam-
ily of algorithms based on [293] (i.e. [48,141,174]), except for defining the pattern
in terms of tatums instead of an arbitrary unit.

The joint distribution of the two variables at frame k can be obtained as

pck,ak(ck, ak|ck−1, ak−1) = pak(ak|ck−1, ak−1)pck(ck|ck−1). (6.4)

6.2.5 Observation Model
This section describes the likelihood of ck and ak given an observed accentuation
yk in the signal. We consider two different options for defining the likelihood
function. The first idea, presented in [219], is to measure the difference between
the expected accentuation (provided by the rhythmic pattern to track) and the
observed one. The larger the difference, the less probable the observation. Then,
the second option is to directly estimate the likelihood function from the labeled
data using kernel density estimation techniques.

3This tolerance is consistent with the micro–timing deviations reported in Section 5.3,
whose maximum values spanned from approximately 20 to 30 ms depending on tempo.
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Likelihood based on expected accentuation pattern
If the accentuation pattern is a vector A ∈ RM×1 containing the expected feature
values, then at frame k the likelihood for ck = 0 (“tatum state”) can be defined as

pyk(yk|ck, ak) = Nσt(yk −Aak), (6.5)

where Nσt(.) is a Gaussian function with zero mean and variance σ2
t used to model

possible deviations between expected and observed accents. For ck 6= 0, the likeli-
hood is given by:

pyk(yk|ck, ak) = Nσd(yk), (6.6)

where Nσd is a zero-mean Gaussian with variance equal to σ2
d. Hence, the closer to

zero the feature, the more probable the observation. This is similar to the non-beat
model adopted in [91], and is not found in [174,293].

In the reported experiments, σt = σd = 0.5, thus allowing for a reasonable
overlap between expected and actual observed values.

Estimation of the likelihood function
The dataset of annotated recordings can be used to directly estimate the likelihood
of the observed accentuation variable yk, given the values of the state variables ck
and ak. If only the tatum state is taken into account, i.e. ck = 0, the histogram
of the low-frequency feature for each of the sixteen possible values of the pattern
index ak is depicted in Fig. 6.2.4

A possible approach for the modelling would be to fit a theoretical distribution
to the data, such as a gamma distribution. However, in some cases there are more
than one local maxima and there seems not to be a single theoretical distribution
appropriate for all the tatums. Another option would be to model the observation
probabilities with a mixture of Gaussian distributions (GMM) as in [141, 174].
But, given the skewness of the data and the fact that the support is bounded, a
Gaussian distribution is not able to accurately fit the boundaries. Therefore, the
Kernel Density Estimation (KDE) approach is preferred in this work, which is a
standard non–parametric technique to estimate the probability density function
of a random variable without making rigid assumptions about the distribution
of the data [139]. Even though the bounded support can also hinder the KDE
approach, some techniques have been devised to overcome the boundary bias issue,
as described in the following.

Let {X1, X2, . . . , Xn} be a sample of independent and identically distributed
observations from an unknown distribution FX with associated density fX ; the
standard kernel density estimator is

f̂X(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (6.7)

4Note that the distribution of values is quite consistent with the simplified basic form
of the piano drum introduced in Section 2.3.2. For instance, the most skewed distribution
towards 1 corresponds to the accented stroke of the fourth tatum. Besides, the histograms
also show that the third and fourth tactus pulses are usually articulated.
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where K is the kernel function, a non-negative function that integrates to one and
has zero mean and usually is symmetric and unimodal, and h is the bandwidth
parameter that controls the smoothness of the estimation [139]. The selection of
the appropriate value for h can be carried out by means of cross–validation. A
variable bandwidth can also be devised, such that different values for h are selected
to locally adapt to different portions of the data [270].

When the support of fX is bounded, the estimator places some positive mass
outside the support for x close to the boundary, preventing the estimation to be
consistent in those areas [118]. For this reason, some techniques have been pro-
posed to properly handle the bounded support I of fX , either by using a kernel
function also supported on I, as in the Beta kernel estimator [72], or by transform-
ing the variable of interest into another whose density estimation should be free
from boundary problems and then transforming the results back to the original
bounded support, such as in the probit–transformation for kernel estimators [118].

After some preliminary experiments in which standard KDE, variable band-
width, Beta kernel and probit–transformation estimators were tested, the latter
was selected as the best performing option. In Section 6.3.7 experiments are re-
ported on the performance achieved by the proposed algorithm with the likelihood
function estimated by standard KDE and probit-transformation methods.
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Figure 6.2: Histogram of feature values at each tatum computed for the whole dataset.

6.2.6 Inference method
Different inference strategies can be employed to find the most probable pat-
tern index and tatum counter values given the observed accentuation, such as

106



6.3. Experiments and results

the forward–backward algorithm [214, 293]. In this work, the well-known Viterbi
algorithm [214] is employed to find the most probable path among all possible
combinations of values of each random variable given the observed features yk.

6.2.7 Prior state distribution
At last, a uniform prior is chosen for c0 and a0 indicating that the counter and
the pattern can start with any possible value in the first frame.

6.3 Experiments and results
A set of experiments was devised to assess the performance of the proposed
rhythmic pattern tracking system with respect to the problems of estimating
the rate and phase of beats and downbeats, using a dataset of manually an-
notated candombe recordings. Several state-of-the-art beat-tracking algorithms
were included in the experiments in order to evaluate how challenging candombe
drumming is for approaches that do not exploit a priori information about the
rhythm [48, 51, 93, 99, 166, 220, 296]. Besides, the implementation of the Bayesian
approach described in [174] was trained and tested with the annotated dataset for
comparison.

6.3.1 Dataset
The dataset of annotated candombe recordings introduced in Section 3.3 was used
for the reported experiments. Whenever a learning phase was part of the algorithm,
such as in the estimation of the likelihood function or the selection of a rhythmic
pattern to inform from the data, a leave–one–out scheme was used [139].

6.3.2 Tempo estimation
Since tempo estimation is only an initialization step of the rhythmic pattern track-
ing task, whose overall performance will be examined in detail, it suffices to men-
tion that the estimated tempo was within the interval spanned by the annotated
beat periods along each of the files in the dataset, thus providing a suitable value
for the respective variable. The estimated tempo value for each file and the cor-
responding median value of the annotated beats are compared in Fig. 6.3. Higher
differences actually correspond to recordings with non-stable tempo, whose impact
on the performance of the proposed algorithm is discussed in Section 6.3.7.

6.3.3 Performance measures
Among the several objective evaluation measures available for audio beat track-
ing [81], there is currently no consensus over which to use, and multiple accuracies
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Figure 6.3: Comparison of the median value of the annotated beats and the estimated tempo.

are usually reported [48, 80]. In a recent pilot study, the highest correlation be-
tween human judgements of beat tracking performance and objective accuracy
scores was attained for CMLt and Information Gain [80].

In this work CMLt, AMLt and F-measure were adopted, as their properties
are well understood and were considered the most suitable for the current experi-
ments. The non-inclusion of Information Gain was based on the observation that
it yielded high score values for estimated beat sequences that were definitely not
valid. Specifically, in several instances when the beat rate (or a multiple of it)
was precisely estimated, even if the beat phase was repeatedly misidentified, the
Information Gain attained high values while other measures such as CMLt or F-
measure were coherently small. In the following, a brief description of the adopted
metrics5 is provided (see [81] for details), along with the selected parameter values.

The CMLt measure (Correct Metrical Level, continuity not required) considers
a beat correctly estimated if its time-difference to the annotated beat is below a
small threshold, and if the same holds for the previous estimated beat. Besides, the
inter-beat-interval is required to be close enough to the inter-annotation-interval
using another threshold. The total number of correctly detected beats is then
divided by the number of annotated beats and expressed as a percentage (0-100 %).
Both thresholds are usually set to 17.5 % of the inter-annotated-interval, which was
also the value adopted in this work. The AMLt measure (Allowed Metrical Levels,
continuity not required) is the same as CMLt but does not take into account errors
in the metrical level and phase errors of half the period.

The F-measure (Fmea) is the harmonic mean of precision and recall of correctly
detected beats, where precision stands for the ratio between correctly detected
beats and the total number of estimated beats, while recall denotes the ratio
between correctly detected beats and the total number of annotated beats. A beat
is considered correctly detected if its time-difference to the annotation is within
±70 ms; this tolerance was kept in this work.

Only CMLt and F-measure were used for assessing the downbeat, since the

5Computed with standard settings using code at https://code.soundsoftware.ac.

uk/projects/beat-evaluation/.
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loosening of metrical level and phase constraints in AMLt was considered inappro-
priate. The parameters used for the downbeat evaluation were the same as those
used for the beat, i.e. 17.5 % of the inter-annotated-interval and ±70 ms tolerance.

6.3.4 Experiments with general–purpose beat tracking algorithms
Some rhythmic characteristics of candombe drumming are potentially troublesome
for the typical algorithmic approaches for beat and downbeat tracking. As noted
in Section 2.3.2, the chico drum pattern defines the pulse, but it usually does not
articulate the tatum that falls on the beat and has instead a strong accent on the
second. Besides, the clave divides the 16-tatum cycle irregularly, with only two
of its five strokes coinciding with the beat. Finally, the strong phenomenological
accents displaced with respect to the metric structure add to the difficulty, such
as the accented piano stroke at the fourth tatum of the first beat.

Fig. 6.4 shows two examples of the typical behaviour of general–purpose beat–
tracking algorithms when dealing with the candombe recordings of the dataset.
The strong accent of the chico drum is sometimes predicted as the location of
the tactus beat, as can be seen in the first example, in which the predictions are
approximately aligned around the second tatum beat. The characteristic strong
accent performed by the piano drum at the fourth tatum beat is also problematic.
In the second example, this accented stroke is the first strong audio event at the
beginning of the plot. Then, it can also be identified in the next measure, four
tactus beats ahead, and once again almost at the end of the plot. As can be seen,
some algorithms tend to predict the beat at this point. In addition, there are also
some errors in detecting the correct beat period.

All the beat–tracking algorithms listed in the following were considered for the
evaluation experiments: the algorithm based on dynamic programming6 by D. El-
lis [99], two systems based on multi-agents, namely BeatRoot7 by S. Dixon [93] and
INESC-BT8 by J.L. Oliveira et al. [220], the multi–feature beat tracker by J.R. Za-
pata et al. [296] provided by the Essentia library,9 two algorithms by S. Böck et
al., both based on recurrent neural networks (RNN) and dynamic Bayesian net-
works (DBN), namely DBNBeatTracker [48] and DBNDownBeatTracker [51], as
provided by the madmom library [49],1011 and the meter analysis algorithm based
on a bank of comb filter resonators and a hidden Markov model by A. Klapuri et
al. [166], which was kindly provided by the author.

Table 6.1 shows the performance attained by each of the algorithms, and also
(for conciseness) the experiments discussed in the next sections. Results are aver-
aged over the whole database and weighted by the number of beats and downbeats

6http://labrosa.ee.columbia.edu/projects/beattrack/
7https://code.soundsoftware.ac.uk/projects/beatroot
8http://smc.inesctec.pt/technologies/ibt/
9http://essentia.upf.edu

10https://github.com/CPJKU/madmom
11Note that the implementation of [48] provided by madmom does not use the multi–

model based on RNN, i.e. it corresponds only to the DBN version of the algorithm. The
efficient state space and transition model for the DBN described in [175] are used.
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Figure 6.4: Two examples of the typical difficulties encountered by beat-tracking algorithms:
D. Ellis [99], BeatRoot [93], INESC-BT [220], Essentia [296], DBNBeat [48] and A. Kla-
puri [166]. The vertical lines show the annotated beats, numbered within a four-beat measure,
while their predicted location is depicted with different markers for each algorithm.

of each audio file. Note that two of the algorithms are able to provide estimates
for the downbeat [51, 166]. Although the beat rate (or a multiple) is sometimes
precisely estimated by the general–purpose beat–tracking algorithms, the correct
metrical level and/or the phase of the beat is usually misidentified.

6.3.5 Experiments with informed rhythmic patterns
Two different experiments are conducted to evaluate the proposed system with the
first observation model, i.e. the likelihood is based on an expected accentuation
pattern A that is informed as an input parameter. This section describes the first
type of experiment, in which the pattern to track A is informed to the algorithm
based on musical knowledge about the rhythm, without any training or tuning
to data. On one hand, this has a practical motivation: even when no annotated
data is available one could take advantage of the technique. On the other hand, it
gives a framework in which musical models can be empirically tested. In short, an
informed rhythmic pattern based on musical knowledge is nothing but a theoretical
abstraction, and this type of experiment could provide some evidence of its validity.

To that end, based on the different ways the piano pattern is notated by
musicology experts [106, 158], a straightforward approach was adopted. Firstly,
the piano pattern as introduced in Fig. 2.13 (usually regarded as the piano in its
minimal form) was considered. A binary pattern A was assembled by setting a
value of 1 for those tatums which are expected to be articulated and 0 otherwise.
Then, a more complex pattern was considered by adding two of the most relevant
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articulated tatums which were missing, namely the 6th and 15th, and also building
the corresponding binary pattern. Hence, the binary informed patterns are

Pattern 1: A = [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0]

Pattern 2: A = [1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0].

Considering binary patterns is certainly an oversimplification of the real rhyth-
mic patterns, since it does not take into account the accented and muffled strokes
that are an essential trait of a piano performance. It would be possible to encom-
pass dynamic variations into the informed pattern by considering distinct quan-
tized values of the feature for different type of strokes. However, the binary pat-
terns were favoured for the sake of simplicity and as a proof of concept. Next
section deals with rhythmic patterns that are not binary.

BEAT DOWNBEAT

CMLt AMLt Fmea CMLt Fmea

General–purpose – Section 6.3.4

D. Ellis [99] 44.2 63.0 43.8 – –
BeatRoot [93] 13.9 14.9 22.7 – –
INESC-BT [220] 9.1 27.6 16.7 – –
Multi-feature Essentia [296] 39.0 39.6 37.6 – –
DBNBeatTracker [48] 14.3 18.8 13.9 – –
DBNDownBeatTracker [51] 6.6 11.9 5.7 17.7 0.6
A. Klapuri [166] 28.8 35.5 29.3 36.6 13.2

Informed patterns – Section 6.3.5

Pattern 1 80.2 80.5 81.3 84.7 79.1
Pattern 2 79.0 81.0 79.8 81.2 77.5

Learned patterns – Section 6.3.6 (leave-one-out)

Median 79.9 79.9 80.8 82.4 76.9
K-means 2 81.7 81.7 82.6 84.4 79.3
K-means 5 82.5 82.5 83.6 85.2 80.6

Density estimation – Section 6.3.7 (leave-one-out)

Standard KDE 89.2 89.2 91.4 90.5 89.2
Probit-transformation 91.4 91.4 93.4 92.6 91.6

Bar pointer model – Section 6.3.8 (leave-one-out)

Bayesbeat (B=1, R=1, T=2006) [174,293] 98.6 98.6 99.1 100.0 100.0
Bayesbeat (B=1, R=1, T=2015) [174,175] 98.9 98.9 99.3 100.0 100.0
Bayesbeat (B=1, R=2, T=2015) [174,175] 98.9 98.9 99.3 100.0 100.0
Bayesbeat (B=2, R=1, T=2015) [174,175] 99.0 99.0 99.3 100.0 100.0

Table 6.1: Performance of all the different experiments conducted. Results are averaged over
the whole dataset, weighted by the number of beats and downbeats of each audio file.
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6.3.6 Experiments with learned rhythmic patterns
In this section, the second type of experiment with the first observation model
is described, in which the accentuation pattern A is based on rhythmic patterns
actually present in real performances, extracted from the annotated dataset. There
are different possible approaches to extract a single rhythmic pattern to track from
the annotated data. Firstly, for each tatum-grid position in the bar-length pattern,
all the feature values in the dataset are collected. The distribution of feature values
in the low-frequency range will be dominated by the base patterns of the piano
drum, albeit there will be a considerable amount of repicado patterns [254]. In
order to cope with that, A is assembled using the median of feature values for each
tatum beat, which is less influenced by outliers than the mean.

The problem with the median pattern is that it models different beat positions
independently. A better suited approach is to group the patterns based on their
similarity into a given number of clusters,12 and select the centroid of the majority
cluster as a good prototype of the base pattern. This was described in Section 5.2
and applied in [254], to identify base patterns of the piano drum. Fig. 6.5 shows
the patterns learned from the whole database, using the median and the centroid of
the majority cluster obtained with K-means for 2 and 5 clusters. It is remarkable
that the differently learned patterns are quite similar, exhibiting the syncopated
4th tatum beat as the most accented one. The locations of articulated beats for
the informed patterns of the previous section are also depicted, and are quite
consistent with the learned ones. The K-means approach turned out to be little
sensitive to the number of clusters, yielding similar patterns for K from 1 to 6.

1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.40

1

COMPARISON OF RHYTHMIC PATTERNS
Pattern1
Pattern2
Median
K-means2
K-means5

Figure 6.5: Comparison of the different rhythmic patterns considered for the experiments of
sections 6.3.5 and 6.3.6. Median and K-means patterns are learned from the whole dataset.

The performance of the approach was assessed using a leave-one-out scheme
and the results are detailed in Table 6.1. Not surprisingly, performance is almost
the same for the different rhythmic patterns. Considering different feature values
instead of binary patterns did not yield any notable performance increase.

A detailed inspection of the performance attained for each recording in the
database, depicted in Fig. 6.6, shows there is still room for improvement, given
that about half-a-dozen files are definitely mistracked. This may indicate that the
pattern A to track simply does not properly match the given performance. To
check this hypothesis, a K-means (K=2) clustering was carried out only with the

12Grouping rhythmic patterns into clusters from annotated data is used in [141,174], as
detailed in [172], to adapt the dynamic bar pointer model to specific music styles.

112



6.3. Experiments and results

candidate patterns found within each target recording, whose tracking was then
performed using the centroid of the majority cluster as A. In Fig. 6.6, the new
results obtained for the files with lower performance (CMLt<50%) in the dataset
are depicted in colour. Except for the first one, performance was (sometimes
notably) improved when the informed rhythmic pattern is the one that better
matches the recording. Therefore, modelling several patterns as in [141, 174] can
potentially improve the current results, even though other source of error exist.
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Figure 6.6: Leave-one-out performance for each file using K-means pattern with K=2. Results
with the centroid of the majority cluster for the low performing files are depicted in colour.

6.3.7 Experiments with likelihood density estimation
This section is devoted to describing the assessment of the proposed algorithm
when using the second observation model, in which the likelihood function is es-
timated from the annotated data by using a KDE technique. The likelihood of
the “tatum state”, i.e. ck = 0, for the different values of the pattern index ak (as
shown in Fig. 6.2), and the likelihood of the “non-tatum state”, i.e. ck = 1, have to
be estimated. Two different methods are considered, the standard KDE and the
probit–transformation technique for dealing with the [0, 1] bounded support [118].

For each tatum, the bandwidth value of the standard KDE method was selected
independently, using 3-fold cross-validation, within a range of values from 0.001 to
0.025 with 0.001 step. The linear kernel was the best performing among the differ-
ent kernel functions tested (linear, Gaussian, exponential), so it was selected for the
experiments with the standard KDE. An improved probit–transformation kernel
density estimator based on local likelihood estimation was used in the experiments,
implemented by locally fitting a 2-degree polynomial to the log–density, which is
equivalent to a local Gaussian estimation [118]. A local adaptive bandwidth in the
transformed variable is achieved by a k-nearest-neighbour method [118].

The results obtained with the KDE approach are provided in Table 6.1. The
most important remark is that the performance is notably increased by the adop-
tion of the observation model based on the estimation of the likelihood function.
Compared to the previous model, based on informing an accentuation pattern A
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as input parameter, the improvement is about 10% in all performance measures
considered. This indicates that the system takes advantage of the more flexible
observation model in order to deal with the variability of the rhythmic patterns
present in real recordings. Besides, the use of an estimation technique that can
properly handle the bounded support of the feature variable provides a small but
consistent increase in all the performance measures.
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Figure 6.7: Leave-one-out performance for each file using probit–transformation estimation
and their corresponding box-plots of annotated bpms.

Notwithstanding the increase of the overall results, the performance of some
files is somewhat less that 75%, as shown in Fig. 6.7. The inspection of these low
performing files reveals that most of them show tempo changes that are difficult
to handle by the proposed algorithm, since it it assumes that tempo is approxi-
mately stable through the piece. The definition of the state variables, in particular
the tatum counter ck is based on an initial tempo estimate. Hence, despite that
certain tolerance for timing inaccuracies in the tatum is taken into account (see
Section 6.2.3), this restricts the capability of the algorithm to properly deal with
tempo changes. Fig. 6.7 also depicts the box-plots of the tempo values extracted
from the manual annotations. It can be seen that there exist certain correlation
between the variability of the tempo values and the performance attained by the
algorithm. For instance, the first 9 files of the dataset exhibit a quite tight distri-
bution of tempo values while achieving high performance measures. Conversely,
the tempo curves of two of the lowest performing files (number 12 and 27) cover
a wide range of values, as illustrated in Fig. 6.8 along with the estimated tempo.
Their behaviour clearly depart from the hypothesis of an approximately stable
tempo, and are therefore troublesome for the proposed algorithm. Regardless of
the observation model utilized by the algorithm, the ability to properly deal with
tempo variations stands as the most necessary improvement to turn the system
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able to increase current performance. An implementation of the dynamic bar
pointer model that handles tempo variations is considered in the next section.
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Figure 6.8: Tempo curves for two low performing files, estimated value shown with a line.

6.3.8 Experiments with trained dynamic bar pointer model
This section describes the experiments conducted with bayesbeat13, a package for
metrical structure analysis of musical audio signals based on the dynamic bar
pointer model [293], that includes all the extensions described in [141, 172, 174–
176, 276]. Among several other features, it allows for training a model from an
annotated audio dataset, and therefore it was adapted in this work to track beats
and downbeats in candombe recordings. Next, a brief comparison to the proposed
algorithm is provided that highlights the most relevant differences. After that, the
experiments conducted and the results obtained are discussed.

Compared to the proposed algorithm, the model implemented in bayesbeat that
was used in the experiments [174], has several differences that are worth noting.
First and foremost, the state space model includes—apart from a variable mk that
tracks the position inside a bar (similar to ak, defined in Section 6.2.3)—a discrete
variable nk that models the tempo value, and an index rk that selects one among
the rhythmic patterns present in the dataset [174]. For this reason, the model
extracts the tempo value at each frame k and is able to track its variations, within
a given range and according to a certain transition model detailed in [174]. Besides,
several rhythmic patterns are modelled, though a rhythmic pattern is assumed to
remain constant throughout the whole piece [174].14

Note that there is no variable such as the tatum counter ck of the proposed
algorithm, that connects the temporal grid of the audio frames to the subdivisions

13https://github.com/flokadillo/bayesbeat
14The transition model was extended in [141] to allow transitions between rhythmic

pattern states within a piece, whenever the bar pointer mk crosses a bar border.
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in the metric structure, similar to the beat phase state in [91]. In consequence, the
models differ in the way the rhythmic patterns are defined within the bar: in terms
of tatum pulses for the proposed model (see Section 6.2.3), or using a 64-bins grid
to divide the measure (for a 4/4 meter) in [174]. Although the observation features
used in [174] are also based on the spectral flux, as in the proposed algorithm (see
Section 6.2.1),15 the observation model has some differences. The most substantial
one is the use of a two-dimensional feature, comprising low-frequencies (<250 Hz)
and high-frequencies (>250 Hz), instead of considering only a low-frequency band
as in the proposed algorithm. Besides, the likelihood function is obtained by fitting
a GMM to the feature values of each bin in the one-bar grid [174].

Various test were conducted to study the influence of the different parameters,
some of which are described in the following. A leave–one–out scheme was used
for training an testing. Instead of learning the tempo range from the data, a fixed
tempo range yielded better results, using the default interval of 60 to 230 bpm. The
two different transition models available were tested, the original one from [293]
(T=2006) and the efficient model proposed in [175] (T=2015). According to the
results in [141], using one rhythmic pattern per rhythm class is usually enough to
achieve a good performance and provided the best results in most cases.16 This
was also the case for candombe, the use of one or two patterns (R=1, R=2) actu-
ally yielded the same results. Therefore, the use of a single rhythmic pattern was
adopted for most of the experiments. The importance of using two-dimensional
features was investigated by considering only the low frequencies (B=1) and both
low- and high-frequency bands (B=2). The default value of I=2 number of compo-
nents was used for the GMM, and the inference was done with the Viterbi method.

The results obtained are presented in Table 6.1. The performance attained
is virtually perfect according to the measures considered, and represents a no-
table improvement with respect to the proposed algorithm. Using only the low-
frequency band (B=1) and a single rhythmic pattern (R=1), as in the proposed
algorithm, was certainly sufficient to accurately track beats and downbeats in can-
dombe recordings. This indicates that, not surprisingly, the ability to track tempo
changes is a critical issue for improving the performance of the proposed algorithm.
Besides, the use of the efficient transition model has no negative impact on the
results, as also noted in [175]. The finer grid in which the rhythmic patterns are
represented and the fact that the “tatum state” model is not needed, may have
also a positive effect on the performance and deserve a thorough study.

Fig. 6.9 shows the rhythmic pattern learned by the model in the low-frequency
band from the whole dataset. It depicts the normalised mean of the feature values
for each of the positions within a bar in the 64th-bin grid. The distribution of
feature values is quite consistent with that of the patterns used in the previous
experiments (see Fig. 6.5). For instance, the articulated strokes of Pattern 1
from Section 6.3.5, exactly match the five most salient positions of the rhythmic

15The feature extraction is actually very similar, except for the use of logarithmic mag-
nitude compression (which emphasises higher frequencies and has no relevant effect if only
low frequencies are considered) and the normalization process.

16Note that updated results and errata were made available after the publication.
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pattern of Fig. 6.9. It is also worth noting that the distribution of feature values
follows a similar micro–timing pattern to that reported in Section 5.3. While the
articulated strokes at the beats show their maximum feature value closely aligned
to their corresponding subdivision (i.e. 1.1, 3.1 and 4.1), the accented syncopated
stroke at the 4th tatum (i.e. 1.4) exhibits its maximum value in the bin just before,
indicating that it is ahead of the exact subdivision in four of the beat (and this
also holds for the stroke at 3.4).
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Figure 6.9: Rhythmic pattern learned from the whole dataset in the low-frequency band.

6.4 Discussion and conclusions
This chapter tackled the problem of automatic rhythmic analysis of candombe
drumming from audio signals. From the rhythm description and the presented
experiments, it becomes clear that typical assumptions of general–purpose beat–
tracking algorithms (such as strong events at beat times) do not hold, which hin-
ders their performance. In order to overcome this problem, an algorithm based
on the Bayesian approach for rhythmic analysis [293] was proposed. By tracking
a rhythmic pattern in the low–frequency band that informs when a beat with or
without accentuation is expected to occur, the algorithm can eventually determine
the complete metric structure. Indeed, experiments employing both rhythmic pat-
terns based on musical knowledge and others learned from the annotated dataset,
showed that the proposed algorithm can estimate the beat and downbeat positions
correctly for most of the files of the dataset, attaining an overall CMLt score of
about 80 to 90 % depending on the observation model applied.

In its present form, the proposed algorithm has a limited ability to properly
deal with tempo changes, which probably constitutes its main drawback. Cer-
tain correlation has been shown between the low performance attained for some
recordings and the variability of their tempo curve. Actually, a more elaborate
algorithm [174], also based on the Bayesian approach, that is able to track tempo
variations showed a virtually perfect performance when trained and tested with
the dataset of candombe recordings. These results provide further evidence for the
need of properly dealing with tempo changes in order to increase the current per-
formance of the proposed algorithm. Besides, the experiments also reinforce the
idea that modelling a single rhythmic pattern in the low–frequency band, which
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corresponds to the piano drum, is sufficient to allow the inference of the whole
metric structure in candombe drumming.

In general, therefore, the present work gives additional evidence of the gen-
eralizability of the Bayesian approach to complex rhythms from different music
traditions. Moreover, the obtained results are very encouraging and allow us to
confidently tackle other problems and applications that rely on automatic tracking
the metric structure from candombe recordings.
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Chapter 7

Analysis based on information theory

7.1 Introduction
Often a parallel is drawn between data compression and computational learn-
ing [163, 187]. The argument runs as follows: the more we are able to compress
the data, the more we have learnt about their underlying regularities. Data com-
pression works by discarding irrelevant information and exploiting repeating pat-
terns. This is essentially the ability to generalize from specific examples to general
rules, which is arguably the very definition of learning. The derivation of general
rules from specific examples is known as inductive inference and has deserved a
great deal of theoretical and experimental work [19, 274]. In turn, a learning al-
gorithm can be judged by how succinctly it explains the observed data. This is a
form of Occam’s razor principle, which states that, assuming that all other things
are equal, a shorter explanation for the observed data should be preferred over a
longer one.1 A formalization of this paradigm in the form of a model of algorithmic
learning is called Occam learning [163].

Similarly, it is also common to draw a connection between data compression
and complexity assessment [180, 297], albeit the actual meaning of complexity
may be domain specific and difficult to seize without a formal definition. Simply
put, data compression captures the amount of structured information present in a
certain phenomenon, therefore the compression ratio can serve as a measure of the
complexity of the data. This idea has been applied in a myriad of disciplines, such
as bioacoustics [164], linguistics [155], image processing [248], and biomedical signal
analysis [2], among others. Actually, complexity has been granted central roles in
psychological models of aesthetic appreciation [42], where the greater the degree
of uncertainty an artistic stimuli contains, the greater the amount of information
it conveys. This form of subjective complexity assessment is often applied to

1This is by no means an irrefutable principle of logic, and there are examples where
Occam’s razor would have favoured the wrong theory given the available data [187]. In
science, parsimony is used as heuristic technique for the development of theoretical models.
The preference for simplicity is based on the falsifiability criterion, that is, simpler theories
are preferable to more complex ones because they are more testable [117].
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music [98,198,278], and relies on objective measures that are usually derived from
information theory.

Music understanding can be partly thought of as a problem of finding repeated
patterns, and thence structure [151,168,215]. Ultimately, data compression can be
tailored to the problem of explicitly finding structure through repeated patterns
in the data under analysis [147]. There is some recent work in this line for the
analysis of symbolic representations of musical pieces by applying different general
purpose text compression techniques [196] and point-set compression algorithms
[204, 205]. The latter treat each note of a music score as a point in pitch-time
space and generate encodings that can be interpreted as detailed thematic/motivic
analyses and compared with those produced by musicologists. Based on such
encodings, the Normalized Compression Distance (NCD) [186] can be used to
measure similarity between pieces for classification purposes, e.g. of folk songs into
tune families [204]. Generally speaking, the distance between two pieces is small if
one can be significantly compressed given the information in the other. A similar
approach is followed in [54], where pattern discovery in a folk song dataset is
applied to compression and classification into tune families. The NCD is also used
in [73,74] to cluster musical styles and composers from symbolic representations of
musical pieces. Likewise, Lempel-Ziv compression [297] is applied in [191] to cluster
symbolic musical pieces for studying musical style and authorship. Indeed, the use
of Lempel-Ziv compression for music style modelling from symbolic sequences can
be traced back to [26]. Lately, the same authors moved to the use of compression
methods based on Factor Oracle [14] for learning musical sequences [25].

Consequently, information theory—and particularly, data compression—stands
as an appealing framework for music modelling. Source coding is a mapping from a
sequence of symbols from an information source to a sequence of alphabet symbols,
such that the source symbols can be exactly recovered (lossless coding), or recov-
ered with some distortion (lossy coding). In his foundational work on information
theory in 1948, Claude Shannon established the limits to possible data compres-
sion [269]. His source coding theorem states that it is not possible to losslessly
compress the data using an average number of bits per symbol (i.e. coding rate)
smaller than the entropy of the source. In this context, entropy is the expected
value of the information contained in each message, where information is defined
as the cologarithm of the symbol probabilities.

Information theory aims at providing a measure of the amount of information
in the data, which can be interpreted as the length of its most compact description.
In this approach, the messages or objects to be encoded are supposed to be out-
comes of a known random source, whose characteristics determine the encoding.
Therefore, given a random source of known characteristics, we are interested in
the minimum expected number of bits per symbol to transmit a message from the
source through an error-free channel.

This is closely related to the Kolmogorov complexity theory [135, 183], also
known as algorithmic information theory, which was independently introduced
by R. J. Solomonoff [274], A. N. Kolmogorov [170], and G. J. Chaitin [70] in
the 1960s. Intuitively, the Kolmogorov complexity of a sequence of data is the
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length of the shortest computer program that can generate it [187]. The computer
program is then the compressed version of the data, and the length of such a
program can be used as a measure of its complexity. In this case, the amount of
information in an object is also related to the length of its description. However,
unlike the Shannon information theory, which takes into account the characteristics
of the random source of which the object is one of the possible outcomes, only
the object itself is considered to determine the number of bits in its compressed
version irrespective of how the object arose [135]. Unluckily, the Kolmogorov
complexity is not computable [187], i.e. given an arbitrary sequence of data there
is no algorithm that returns the shortest program able to produce the data. In
practice, computable approximations have to be adopted.

A practical alternative is the minimum description length (MDL) principle,
introduced by J. Rissanen in 1978 [249], and significantly developed since then
in both the mathematics and applications [32, 134]. It is also concerned with
the greatest compression of the data by means of a certain model, and considers a
lossless representation that also takes into account the cost of describing the chosen
model itself. Then, among a collection of different candidate models, the one that
achieves the shortest description length of the data is selected. In that sense, MDL
can also be regarded as a practical implementation of the Occam’s razor principle,
and constitutes a powerful method for inductive inference and model selection.

Recently, some research work has been devoted to exploiting the methodology
of MDL and Kolmogorov complexity for the analysis of symbolic music. In [201],
the author proposes an expression for MDL complexity of Hidden Markov Models
(HMMs), that can be applied to symbolic modelling of music structure. In [203]
an approach based on Kolmogorov complexity is discussed when applied to the
description of symbolic music. Somehow related, in [271] a given piece of music is
treated as a sequence of symbols and the shortest possible context-free grammar
that generates it is looked for. The use of probabilistic grammars for symbolic
music analysis in this framework is reviewed in [1].

For lossy source coding, Shannon introduced and developed the theory of source
coding with a fidelity criterion, also called rate-distortion theory, which provides
the theoretical foundations for lossy data compression [268,269]. In practice, when
we have a continuous source we are not necessarily interested in exact recovery, but
only in approximate recovery within a given tolerance. Hence, a distortion measure
is introduced to account for the average of the information loss. The problem of
coding is then formulated as determining the minimal number of bits per symbol,
as measured by the coding rate, so that the source can be approximately recov-
ered without exceeding a given distortion value. Rate-distortion theory has been
studied in the information-theory community for more than fifty years [40, 41].
Today, rate-distortion theoretical concepts are an important component of many
lossy compression techniques and standards, and have been successfully applied
to lossy coding of speech, high-quality audio, images, and video [41,225]. Besides,
model selection can also be tackled via rate-distortion theory if the requirement
for lossless coding is relaxed [161, 171]. In addition, rate-distortion properties of
individual objects can be analysed by means of the recently developed algorithmic
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rate-distortion theory [290], which, inspired by the Kolmogorov complexity of in-
dividual finite objects, lays down the foundations for an algorithmic analogue of
Shannon’s probabilistic rate-distortion theory [90]. Nevertheless, the application
of a lossy source coding scheme to the description of music and the analysis of
its structure, even though suggested in a recent seminar on computational music
structure analysis [46], remains, to the best of our knowledge, virtually unexplored.

The main motivation of this work arises from a novel idea: to recast the down-
beat detection task as a data compression problem. To do that, different possible
alignments of the beats within the rhythm cycle are evaluated and a parsimony
criterion is used to select the one corresponding to the downbeat. The hypothe-
sis is that the correct alignment will allow for a simpler explanation of the data
compared to the misaligned ones. For this purpose, a lossy compression frame-
work based on the rate-distortion theory is adopted. This is done because, instead
of using symbolic music, the analysis is performed on a continuous data source,
which corresponds to an accentuation feature function that is directly computed
from audio recordings. In this way, a sort of music structure analysis problem—in
its minimal expression—is formulated based on the rate-distortion theory. Addi-
tionally, it turned out that the obtained description is well suited for addressing
other related tasks, namely the complexity assessment of performances and the
estimation of the number of different rhythmic patterns in a given recording.

The rest of the chapter is organized as follows. Next section introduces the
rate-distortion theory and describes the methods applied. In Section 7.3 the pro-
posed approach to deal with audio recordings of candombe performances is pre-
sented. Some experiments and the obtained results are reported in Section 7.4.
The chapter ends with a critical discussion on the present work, including promis-
ing directions for future research.

7.2 Rate-distortion theory
The rate-distortion theory is usually introduced by noticing that the description
of a real number requires an infinite number of bits, thus a finite representation
of a continuous random variable X can never be perfect [78]. Despite the fact
that it is not perfect, we can still try to determine how good the representation
is, so the definition of some sort of evaluation measure is actually needed. This is
accomplished through the introduction of a measure of distortion, namely D, which
describes the distance between the random variable and its representation. Thus,
by allowing some distortion D, the amount of bits used in the representation can
be lowered, a formulation that in fact perfectly fits the notion of lossy compression.
Adopting a communication theory perspective, this is equivalent to the problem
of determining the minimal number of bits per symbol, measured by the bit-rate
R, that should be transmitted over a channel so that the input signal can be
approximately reconstructed at the receiver without exceeding a certain mean
distortion D. Thus, a communication system involving an encoder and a decoder
can be formulated based on rate-distortion.
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Encoding
Consider such a rate-distortion encoder/decoder system applied to a random vari-
able X. Let Xn = X1, X2, . . . , Xn be a sequence i.i.d ∼ pX(x), x ∈ X . This
source sequence Xn ∈ X n is represented by the encoder as an index fn(Xn) ∈
{1, 2, 3, . . . , 2nR}. The decoder representsXn by an estimate X̂n ∈ X̂ n. A (2nR, n)-
rate distortion code can be defined, which consists of an encoding function,

fn : X n → {1, 2, 3, . . . , 2nR}, (7.1)

and a decoding or reproduction function,

gn : {1, 2, 3, . . . , 2nR} → X̂ n. (7.2)

The rate-distortion encoder/decoder system defined so far is presented in Fig. 7.1.
The decoded sequence gn(fn(Xn)) = X̂n is a quantized version of the original
source sequence Xn. Then, a vector quantization scheme that is optimal with
regards to the distortion measure has to be considered.

Figure 7.1: Rate-distortion encoder/decoder.

Vector quantization
If we are given R bits per symbol to represent the source X, the problem is to
find the optimum reproduction points which minimize the distortion measure, i.e.
design a vector quantizer. A vector quantizer Q is a mapping from an Euclidean
space of dimension k, Rk, to a finite set CM , known as codebook, which contains
M output vectors χ̂m ∈ Rk, known as codevectors,

Q : Rk → CM = {χ̂1, χ̂2, . . . , χ̂M}. (7.3)

Associated with each codevector χ̂m there is a reconstruction region or cell that
can be defined as

Rm = {x ∈ Rk | Q(x) = χ̂m}. (7.4)

The encoder is completely specified by the partition of Rk, and the decoder is com-
pletely specified by the codebook. Given a distortion measure, the mean distortion
value achieved by the system is computed as

D =

∫
Rk
d(x, Q(x)) pX(x) dx. (7.5)
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Two simple properties are useful to find an appropriate vector quantizer. First,
given a set of reconstruction points {χ̂i}, the distortion is minimized by mapping
each element of Xn to the closest of them, which is known as the nearest-neighbour
condition. The set of regions defined by this mapping is called a Voronoi or
Dirichlet partition, and correspond to the nearest-neighbour regions with respect
to the distortion measure. Then, given a certain partition, the selection of the
reconstruction point for each region should minimize the distortion measure. This
is accomplished by selecting the centroid of the region as the reconstruction point,
which is known as the centroid condition. The generalized Lloyd algorithm for
designing a vector quantizer is based on these properties [188,189].

Generalized Lloyd algorithm

The generalized Lloyd algorithm [188] is an iterative algorithm that starts with a
certain set of reconstruction points and finds the optimal reconstruction regions as
the nearest-neighbour regions with respect to the distortion measure. Then, the
optimal reconstruction points are computed as the centroids of the reconstruction
regions and the iteration is repeated for the new reconstruction points. In this way,
the expected distortion is decreased in each iteration, and the algorithm converges
to a local minimum in a finite number of iterations. A stopping criteria has to
be applied, for instance by means of a threshold δ in the amount of distortion
decrease between iterations. The algorithm is summarized in Algorithm 1.

Algorithm 1 Generalized Lloyd algorithm

step 1: start with m = 1, initial codebook C1 = {χ̂1} and distortion D1

step 2: given codebook Cm find codebook Cm+1 by
2.a finding nearest-neighbour regions {Rm} to partition Rk

2.b setting reconstruction points {χ̂m+1} as centroids of {Rm}
step 3: compute distortion measure Dm+1 for new codebook Cm+1

if (Dm −Dm+1 > δ) then
goto step 2

It is worth noting the close relationship between the generalized Lloyd algo-
rithm and the K-means clustering algorithm [150]. The latter also repeatedly finds
the centroid of each set in the partition, and then re-partitions the input accord-
ing to which of these centroids is closest. But the main difference is that K-means
clustering operates on a discrete set of points instead of a continuous region. Thus,
repartitioning the input means simply determining the nearest centroid to the fi-
nite set of points, whilst the generalized Lloyd algorithm actually partitions the
whole space into regions. However, note that if the input is a finite set of points
both algorithms are equivalent.

In practice, some details have to be taken into account if the input is a fi-
nite set of points, for instance, to deal with points that are equidistant to more
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than one centroid (zero probability boundary condition2) or to check for an empty
region. Besides, there is a strong dependence on the initial codebook, and differ-
ent initialization strategies can be followed, such as random selection, pruning or
splitting [120].

Distortion measure
The distortion function d(x, x̂) is a measure of the cost of representing symbol x
by symbol x̂. It can be regarded as a mapping

d : X × X̂ → R+ (7.6)

from the set of pairs of the source alphabet and the reproduction alphabet into
non-negative real numbers. To measure the distortion between sequences xn and
x̂n, the average of the per symbol distortion of the elements of the sequence can
be used, which is computed as

d(xn, x̂n) =
1

n

n∑
j=1

d(xj , x̂j). (7.7)

Some of the most common distortion functions are the Hamming distortion and
the squared–error distortion. Given x, x̂ ∈ Rk, such that x = [x1, x2, . . . , xk] and
x̂ = [x̂1, x̂2, . . . , x̂k], the squared–error distortion is the squared 2-norm of the
difference between symbols,

d(x, x̂) =
1

k
‖x− x̂‖22 =

1

k

k∑
i=1

(xi − x̂i)2. (7.8)

Operational rate-distortion curve
The relationship between rate and distortion can be characterized by the so-called
rate-distortion function, R(D), that determines the set of possible achievable points
in the rate-distortion trade-off for a certain statistical source class [225]. In order
to derive such bounds the source has to be properly characterized, but this can
be troublesome for complex sources, such as audio and video signals.3 Besides,
the bound provided by a theoretical rate-distortion function gives no constructive
procedure for attaining that optimal performance.

Instead, a practical quantization scheme can be examined, and the best oper-
ating points of this particular system can be searched for. If all possible quanti-
zation choices for that system are considered for a certain source (described by a

2This is in fact a necessary condition for a quantizer obtained by means of the gener-
alized Lloyd algorithm to be optimal, together with the nearest-neighbour condition and
the centroid condition. In the case of a continuous input the boundary has zero volume
and hence the probability is also zero.

3In fact, the rate-distortion function is known in closed form only for special cases, such
as the Gaussian source with squared-error distortion or the binary memoryless (Bernoulli-
p) source with Hamming distortion [78]. For other distributions, usually numerical meth-
ods have to be applied [225].
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statistical model or a training set), an operational rate-distortion curve can be de-
fined [120,225]. The curve depicts for each rate the distortion achieved by the best
encoder-decoder pair designed for that rate. The points in the curve are said to be
operational, since they are achievable with the chosen quantization implementation
for the available data. The curve allows to identify the best achievable operating
points and to differentiate them from those that are sub-optimal or unachievable.
When we can make the search among a fixed and discrete set of parameters, each
combination of parameters gives a certain R-D pair, producing a curve of indi-
vidual admissible operating points. In this case, the convex hull of the set of
operational points defines the boundary between achievable and non-achievable
performances [225]. Fig. 7.2 depicts an operational rate-distortion curve.

0

Distortion

0

R
a
te

Figure 7.2: Schematic diagram of an operational rate-distortion curve, with the operational
points and their convex hull.

Optimization

Within this rate-distortion framework, given a source with a certain distribution
and a distortion measure, we seek to establish what is the minimum expected dis-
tortion at a particular rate, or equivalently, what is the minimum rate description
required to achieve a certain distortion [78]. This can be posed in the form of
constrained optimization problems. That means considering either a cost function
D with constrained rate R ≤ Rc, or conversely a cost function R with constrained
distortion D ≤ Dc.

The solution of a constrained optimization problem can often be found by using
the so-called Lagrangian method, which minimizes an unconstrained cost function
that is the sum of the original objective function and a term that incorporates the
constrain and a multiplier λ ≥ 0, a non-negative real number known as Lagrange
multiplier. This is a well known technique for problems where the cost function
is continuous and differentiable. Yet, when the operational rate-distortion curve
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is considered, the optimization can be performed through a discrete version of the
Lagrangian method [225]. The technique is able to find and optimal solution as
long as there exists a point in the convex hull that meets the required constraint.
Let l be an index used to denote the operational points on the convex hull of the
curve, such that as l increases the rate decreases and the distortion increases. The
discrete optimization problem can be formulated as

minimize
l

J = Dl + λRl. (7.9)

For a particular value of the multiplier λ, the Lagrangian rate-distortion functional
J is minimized as follows. Consider the line contours of constant J value, which
are the lines of slope equal to −1/λ, that are represented graphically in Fig. 7.3
for a certain λ value. The minimization corresponds to finding the point in the
convex hull that intersects the line contour corresponding to the smallest J value.

0 Dl

Distortion

0

Rl

R
a
te

lines of constant 
J=Dl + λRl

λRl

Figure 7.3: Discrete version of Lagrangian optimization for an operational rate-distortion curve.

The Lagrange multiplier λ allows for the selection of specific optimal points in
the rate-distortion trade-off. Note that minimizing the Lagrangian J when λ = 0 is
equivalent to minimizing the distortion, whereas minimizing the Lagrangian when
λ becomes arbitrarily large is equivalent to minimizing the rate. Intermediate
values of λ determine intermediate operating points. Finding the correct value
of λ that provides an optimal solution at the required rate can be done using
approaches such as the bisection search [225].

7.3 Proposed approach
The proposed approach is based on the idea of describing a complete percussion
performance by using a rate-distortion coding scheme. We expect that by studying
the coding trade-off between the number of bits per symbol and the amount of
distortion we gain some insight into the characteristics of the performance.
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An audio recording of a complete candombe performance is represented using
the spectral audio features described in Section 4.2 and considered as the primary
input source to encode. To roughly separate the rhythmic patterns of the differ-
ent drums, a sub-band filtering is applied. Only the low-frequency band—which
corresponds to the piano drum—is used in the reported experiments. A local am-
plitude normalization is carried out to preserve intensity variations of the patterns
while discarding long-term fluctuations in dynamics. Assuming the beat positions
are known, either manually labelled or automatically tracked, the feature signal is
time-quantized by considering a grid of tatum pulses.

The resulting input space Rk has dimension k = 16, corresponding to the
number of tatums in each rhythm cycle. Thus, the input vectors are of the form

x = [x1, x2, . . . , x16]. (7.10)

Since features are normalized, each component xi takes values in [0, 1]. A complete
performance of length N rhythm cycles is represented by the sequence

xN = {x1, x2, . . . , xN}. (7.11)

This sequence can also be regarded as a matrix

X = (xi,j), i ∈ [1, 16], j ∈ [1, N ], (7.12)

where i is the tatum index and j is the rhythmic cycle index. An example of this
type of matrix is presented in Fig. 7.4, for one of the performances from the dataset
for beat/downbeat tracking introduced in Section 3.3. Note this representation is
nothing but the map of feature patterns proposed in Section 4.2.3.

The vector quantization is implemented following the approach of the gener-
alized Lloyd algorithm. For this particular case, in which the input is a finite set
of points, this corresponds to the K-means clustering algorithm. Therefore, each
rhythmic pattern xj of the performance is clustered to a particular group Rm and
represented by its centroid χ̂m. Fig. 7.4 shows with different colours the grouping
obtained for a codebook of size M = 4. The input sequence xN is represented by
the encoded sequence x̂N only comprising elements of the codebook CM .

A distortion value, d(xj , χ̂m), is computed between every pattern symbol xj of
the sequence and its corresponding codevector χ̂m, using the squared-error distance
defined in Equation 7.8. Then, the distortion of the whole input sequence xN is
obtained by averaging the per symbol distortion, using Equation 7.7.

The bit-rate R of the encoded sequence x̂N is computed as

R = −
M∑
m=1

pm log2(pm) (7.13)

where M is the codebook size and pm is an estimate of the probability of occurrence
of each symbol. The probability estimate pm is obtained as

pm =
nm
N
, nm = #{χ̂m = x̂j} ∀ x̂j ∈ x̂N , j ∈ [1, N ], (7.14)
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Figure 7.4: Coding process of a complete performance. The input sequence xN (top), the
clusters shown with colours (middle) and the output sequence x̂N of codevectors (bottom).

where # denotes the cardinality of the set, and thus nm represents the number of
occurrences of the codevector χ̂m in the encoded sequence x̂N , which is normalized
by the total length of the sequence.

The coding process described so far relies on a single parameter, namely the
codebook size M . Therefore, an operational rate-distortion curve is obtained by
varying the codebook size M and computing the corresponding values for the rate
and the distortion. An example of this type of operational curve is depicted in
Fig. 7.5, for the same audio file used in Fig. 7.4. Note that the rate is expressed
in bits and the distortion is a mean squared-error value. The number next to
an operational point indicates the corresponding value of the codebook size M .
The behaviour of the rate-distortion curve is as expected: as the codebook size is
increased, the distortion diminishes while the rate grows.

The K-means clustering is initialized with reconstruction points selected at
random, which can have an impact on the obtained clusters. For this reason, in
the reported experiments the K-means clustering is repeated 10 times and the best
solution is selected according to the overall minimum sum of distances of cluster
members to centroids. To further mitigate the initialization effect, the process for
computing every point in the curve is repeated 10 times, and the median values
for rate and distortion are actually used.
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Figure 7.5: Operational rate-distortion curve obtained for the example of Fig. 7.4.

7.4 Experiments and results
Three different types of experiments are reported in this section aiming at assessing
the usefulness of the proposed approach, using the dataset of candombe record-
ings introduced in Section 3.3. Firstly, the operational rate-distortion curves are
used to qualitatively characterise drumming performances in terms of their over-
all complexity. Some possible implications of this method to the description of
performance style and player expertise are also discussed. Then, the problem of
estimating the number of different rhythmic patterns in a given performance is
addressed within the rate-distortion framework. The solution investigated corre-
sponds to selecting an operational point in the curve that adequately balances the
rate-distortion trade-off. Finally, in the light of the previous experiments, the last
problem addressed aims at identifying which one of the beats corresponds to the
downbeat, without using any high-level information about the rhythm except for
its four-beat structure. By comparing the rate-distortion curves of the different
possible alignments of the four beats within the rhythm cycle, it turns out that
the correct solution yields the less complex representation for a large part of the
available recordings, thus allowing the automatic detection of the downbeat. The
underlying rationale for the success of the method as well as its limitations are
discussed and illustrated with examples.

7.4.1 Comparison of performance complexity
The operational rate-distortion trade-off will show a different behaviour depend-
ing on the complexity of the performance. Firstly, the rate-distortion curve is
determined by the number of codevectors needed to properly encode the sequence.
For instance, if there are several different rhythmic patterns played, then a small
codebook size will not suffice to correctly describe the performance and will nec-
essarily yield a high distortion value. Apart from that, there is also the issue
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of how well each group of patterns is represented by a single codevector. The
amount of variability of the patterns within a certain group will also contribute
to increase the distortion, even for the correct codebook size. For these reasons,
when analysing different performances their rate-distortion curves will lie in differ-
ent regions, simpler performances yielding lower rate-distortion values compared
to the more complex ones. This is illustrated in the following experiment.

Experiment 7.1

Four different complete performances from the dataset were selected and classified
by a music expert, namely Luis Jure, with regards to the overall complexity of
the piano drum part. For each recording the low-frequency feature was extracted,
the input sequence xN was constructed using the beat/downbeat labels and the
operational rate-distortion curve was computed varying the codebook size from 1
to 30. This is the standard procedure adopted for all the reported experiments.
The resulting curves are depicted in Fig. 7.6, together with the corresponding input
sequence xN of each performance. From top to bottom, the input sequences are
sorted in a decreasing order of complexity, according to the judgement of the music
expert. Note that the same ordering is evidenced in the operational rate-distortion
curves, the more complex performances indicated with darker lines.

There are many possible ways to characterise the rate-distortion curves and to
summarize their behaviour into a single number. For instance, the distortion value
for the codebook size M = 1 (that shall be denoted as D0), i.e. the point corre-
sponding to zero rate, preserves the ordering of performance complexity. However,
it ignores the behaviour of the curve for other codebook sizes. Another option is
to compute the area under curve (AUC). To do that, the curve is extrapolated
to estimate a cut-off point in the ordinates (with a polynomial fit considering the
last 10 values) and the AUC is calculated using the numerical trapezoidal rule for
approximating integrals. The AUC values obtained in this way are included in
Fig. 7.6-left and are consistent with the qualitative ordering of the performances.
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Figure 7.6: Rate-distortion curves (left) and input sequences (right) of Exp. 7.1.
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The following description of the recordings provides some insight on the as-
sessment proposed by the musicologist. The most complex recording is performed
by the virtuoso piano drum player Eduardo “Malumba” Giménez, who belongs to
the Ansina tradition. Although he has always been a highly accomplished player
with a tendency of displaying feats of skill well above the average, in this particu-
lar take he deliberately intended to show a complex performance, as he explicitly
stated once the recording was over. The next performance was recorded by Gus-
tavo Oviedo, within the time period—of approximately twenty years—in which
he was considered one of the best piano drum players of the Ansina style. The
input sequence of the recording shows the irregular but well-balanced distribution
of base and repicado patterns that was previously noted in Section 5.2. There are
essentially four different rhythmic patterns, two base and two repicado, which also
allow for some minor variations. The two remaining recordings are considerably
less complex. The first one is in the Cuareim style, performed by noted candombe
drummer Juan Silva. Arguably, the piano drum style in the Cuareim tradition is
regarded as rather plain and with fewer repicado patterns compared to the Ansina
style. After keeping the same base pattern for approximately the first one-third of
the recording, it is the piano drum who calls for increasing the tempo by playing
two repicado patterns. From this point onwards, the base pattern is simplified—
probably due to the tempo increase—and the repicado pattern is played a few more
times. The last recording features renowned piano drum player Eduardo “Cacho”
Giménez, who has been an important and influential member of the Ansina style.
However, in this recording session he limited himself to just playing only a sin-
gle base pattern throughout the whole performance—which sometimes shows an
ornamentation in the fourth beat—without any repicado patterns.

Experiment 7.2
It is reasonable to assume that the degree of complexity displayed in a performance
is voluntarily controlled by the player, probably depending on the musical context.
At the same time, the degree of complexity can also be associated with personal
style and expertise. In order to illustrate these issues, different recordings of the
same performers are considered in the following.

First, another performance by Eduardo “Malumba” Giménez is compared to
the recordings of the previous experiment. Recall that this player produced the
most complex performance of Fig. 7.6, which was in fact an exhibition of virtuosity.
Yet, during the same session in 1992 he recorded a more conventional performance,
whose rate-distortion curve is depicted in Fig. 7.7-left, along with the ones of the
previous experiment. The evolution of the curve and its AUC value are clearly
different from those of the first recording by the same player. Actually, it seems
to be closer to the recording featuring Gustavo Oviedo (that ranked second in the
previous experiment), which is quite in accordance with subjective assessment.

Then, a comparison is carried out considering all the performances of the
Ansina style from the recording session of 1995. There are a total of 9 record-
ings, the piano drum played by Gustavo Oviedo in five of them and by Eduardo
“Cacho” Giménez in the remaining four. The rate distortion curves and their
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AUC values are presented in Fig. 7.7-right. Two groups of recordings are readily
distinguishable, each one corresponding to a different performer. This indicates
their personal styles were consistent and clearly different from each other during
the whole recording session, which once again matches subjective assessment.
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Figure 7.7: Rate-distortion curves of the first experiment with the addition of another recording
by Eduardo “Malumba” Giménez (left) and comparison of all performances in the Ansina style
from the recording session of 1995, corresponding to two different piano players (right).

7.4.2 Estimation of the number of rhythmic patterns
The next problem addressed is the automatic estimation of the number of rhyth-
mic patterns in a given recording. This could be applied to the detection and
classification of rhythmic patterns, performance style comparison and training of
beat/downbeat tracking algorithms [219,254]. Since the feature values are contin-
uous and the rhythmic patterns may exhibit several variations within a recording,
the problem can be regarded as finding a good compromise between a concise ac-
count of a given performance and a sufficiently precise description of its rhythmic
patterns. Within the rate-distortion framework this corresponds to selecting a cer-
tain operating point of the trade-off. If a detailed representation is required, then
the number of rhythmic patterns (i.e. the codebook size) has to be increased, at
the expense of a necessarily longer performance description (i.e. higher rate). This
can be posed as an optimization problem which can be solved using the discrete
version of the Lagrangian method [225]. But it still requires one finds the optimal
value for the Lagrange multiplier λ, a problem tackled in the following experiment.

Experiment 7.3

If a sufficiently large and representative training set is available, the optimal value
for the Lagrange multiplier λ could be searched for, providing that it yields the
correct number of rhythmic patterns for most of the data at hand. This kind
of approach is illustrated in the following. A set of rhythmic patterns usually
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found in candombe performances was considered, and audio files that followed
them were synthesized. To do that, the process described in Section 3.2 is applied,
i.e. music scores with the rhythmic patterns were produced in a general purpose
music engraving software language, adopting some conventions to represent the
different types of strokes. Several sound samples of each type of stroke, recorded
by a professional musician, were randomly selected by the synthesis program, which
is able to interpret local accents and variations in dynamics.

The music scores of Fig. 7.8-left represent the six piano rhythmic patterns that
were used in the experiment, comprising four base patterns and two repicado pat-
terns. Lower and upper line represent hand and stick strokes respectively and the
muffled strokes are indicated with a cross. Six audio files of the same length (180
rhythm cycles) were rendered by gradually incrementing the number of different
patterns included, up to a uniform distribution of all of them. Fig. 7.8-right shows
the of number of cycles per rhythmic pattern in each audio file.
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Figure 7.8: Rhythmic patterns used in the experiment (left) and number of cycles per rhythmic
pattern in each audio file (right).

Then, the rate-distortion curves were computed and the discrete Lagrangian
method was applied to them, i.e. the minimization in equation 7.9 was performed.
For each curve, the λ values that yield the correct number of patterns were looked
for, following a grid-search scheme. The grid of values considered is in the range
λ = [0.001, 0.05] with a step of 0.0001. Fig. 7.9 shows the rate-distortion curves,
along with the extremes of the grid represented with a dashed line. The range
of valid λ values for each audio file, i.e. the ones producing the correct number
of patterns, is also indicated as a light greyed out region. If the extent of valid
λ values among different files is considered, it turns out that the range λ[1,6] =
[0.0058, 0.0099] yields the correct solution for all files, shown as a darker greyed
out region. The next experiment tests this approach with real recordings.
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Figure 7.9: Rate-distortion curves for the synthetic audio files of Exp. 7.4. Extremes of the
grid of λ values are depicted with dashed lines. The range of valid λ values for each file and
the range in common for all files are shown as light and dark greyed out regions, respectively.
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Experiment 7.4
This experiment tackles the estimation of the number of different rhythmic pat-
terns in real recordings, considering the four complete performances introduced in
Fig. 7.6. For this purpose, the discrete Lagrangian method is applied using a value
of λ∗ = 0.00785, which is the mean of the range λ[1,6]. This is represented graph-
ically in Fig. 7.10-left, as lines with slope −1/λ∗ intersecting each rate-distortion
curve. The solutions obtained in this way suggest a number of patterns M of 6,
4, 3, and 2 for the recordings sorted in decreasing order of complexity. The en-
coding of each performance is presented in Fig. 7.10-right using the corresponding
estimate of the number of patterns as the codebook size.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Distortion (mean squared-error)

0

1

2

3

4

5

R
a
te

 (
b
it

s)

M  filename                     

6  proyecto.1992_gimenez_02

4  csic.1995_ansina1_04

3  csic.1995_cuareim_02

2  csic.1995_ansina2_03

Figure 7.10: Estimation of the number of rhythmic patterns for the audio recordings of Fig-
ure 7.6. Dashed lines intersecting each rate-distortion curve (left) represent the discrete La-
grangian minimization applied. The resulting coding using the estimated number of patterns
as the codebook size is depicted with colours in the feature maps (right).

Unlike the previous synthetic experiment there is no ground-truth in this case,
but the validity of such estimations can be assessed in light of the description of
the performances provided in Section 7.4.1. Recall that the less complex recording
involved a single base pattern throughout the whole performance, which is some-
times modified by playing an ornamentation in the fourth beat. This description
matches the resulting automatic coding, with one of the two rhythmic patterns
being the plain base and the other corresponding to the ornamented one. For
the next recording, the estimation of three different rhythmic patterns also agrees
with the qualitative description, since the same base pattern is played during the
first one third of the recording, and following a tempo increase—announced by
repicado patterns—a variation of the base pattern is used until the end, with some
repicado patterns in between. Then, also in accordance with the estimation, the
following performance has essentially four different rhythmic patterns, two base
and two repicado, that were described in detail in Section 5.2. Finally, the last
recording is a puzzling one due to its virtuosity nature. There are several different
rhythmic patterns that exhibit a lot of variation within each type. This makes it
difficult to agree on the correct number of patterns, which are probably at least
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four. It can be noticed that similar consecutive patterns are grouped together and
straight repicado patterns are separated from embellished base patterns.

It is interesting to examine the impact of the Lagrange multiplier into the
estimation of the number of patterns of these recordings. To do that, instead of its
mean value λ∗, the bounds of the range λ[1,6] are considered, that is bλc = 0.0058
and dλe = 0.0099. The estimations for the higher bound (i.e. the lowest slope) are
5, 4, 3, and 2, for the recordings in decreasing order of complexity, whereas if the
lower bound is used (i.e. the highest slope) the estimated number of patterns are
7, 5, 3, and 2. The estimations for the last two recordings remain unchanged, while
in the others the difference is only one pattern. This suggest certain robustness to
the selection of the optimum λ value.

7.4.3 Downbeat detection
The last type of experiment recasts the downbeat detection task as a data com-
pression problem. Assuming the location of beats is known, the aim is to identify
which one of them corresponds to the downbeat. This is addressed by considering
the different possible alignments of the four beats within the rhythm cycle. When
rhythmic patterns of one-cycle length are considered, their alternation along the
whole performance can give a hint on the location of the downbeat. In particular,
the correct alignment will probably allow for a less complex description of the
input sequence when compared to the misaligned options.

This is schematically illustrated in the example of Fig. 7.11. Consider the
input vectors xj , j ∈ [1, N ], one after the other as a single stream of features. To
produce the input sequence xN , they have to be assembled in groups of the length
of a rhythm cycle, which is 16 tatum pulses in this case. Suppose there are only two
different rhythmic patterns played, say a base and a repicado pattern (notated as b
and r in Fig. 7.11). Therefore, the correct alignment—the one consistent with the
downbeat—can be optimally represented with a codebook of only two codevectors.
However, other alignments will produce rhythmic patterns that are combinations
of the original ones, yielding base-repicado (br), repicado-base (rb) and base-base
(bb) patterns. Therefore, a codebook of three codevectors is needed, leading to a
more complex description of the input sequence.

Figure 7.11: Diagram of two possible pattern alignments which imply different codebook sizes.

When the downbeat detection of an audio file is tackled, each beat of the four-
beat rhythm cycle is alternatively considered as the downbeat, so four different
alignments have to be evaluated. The different alignments are implemented as
circular shifts of the feature map, starting from a shift of 0 beats (i.e. no shift) up
to a shift of 3 beats. Larger shifts are redundant and therefore not considered—e.g.
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a shift of 4 beats produces no shift. Then, operational rate-distortion curves are
computed for each different alignment.

This is shown in Fig. 7.12 for four of the synthetic audio files of Section 7.4.2,
involving 2, 3, 4 and 5 rhythmic patterns respectively. The complexity measures
are also included in Fig. 7.12 for each one of the shifts, namely the area under
curve (AUC), and the minimum value of the Lagrangian rate-distortion functional
(Jmin). The discrete Lagrangian method is applied using a value of λ∗ = 0.00785
(the mean of the range λ[1,6]), and the codebook size M obtained in this way is
also indicated. It can be seen that for all the audio files the correct alignment
produces a curve that takes lower rate-distortion values compared to the shifted
ones. Note that complexity measures also show this behaviour, and that even
in those cases when the codebook size is the same the correct alignment yields
a smaller distortion value, which indicates that each group of patterns is better
represented by a single codevector.
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Figure 7.12: Downbeat detection analysis for three of the synthetic audio files introduced in
Figure 7.8, involving 2, 3, 4 and 5 rhythmic patterns. The rate-distortion curves correspond
to the four different possible alignments of the beats within the rhythm cycle.

The previous examples indicate that the downbeat could be identified by com-
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paring the rate-distortion trade-off of the different alignments. Nevertheless, the
rationale for this is the alternation of patterns in the recording and there may be
some cases which fail to provide enough information for downbeat detection. To
further illustrate this, the analysis of two real recordings is presented in Fig. 7.13.
Recall the diagram of Fig. 7.11 in which the correct alignment yields the shortest
codebook size. This situation corresponds to the first example of Fig. 7.13, which
contains base and repicado patterns. The shifting of the feature map gives rise to
a higher number of rhythmic patterns, so the complexity of the description needed
to account for the performance is increased. Note that in this case both complexity
measures favour the selection of the correct alignment.
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Figure 7.13: Downbeat detection analysis for two recordings of the dataset, one with base and
repicado patterns (top) and another one with only a base pattern occasionally ornamented
in the fourth beat (bottom). The rate-distortion curves (left) and the feature maps (right)
correspond to the four different possible alignments of the beats within the rhythm cycle.

However, it is fairly obvious that if the performance contains a single pattern
all alignments will be equivalent. Moreover, even in the case where there is more
than one pattern the complexity of the different alignments may look all the same.
For instance, in the second example of Fig. 7.13—the most simple of the recordings

139



Chapter 7. Analysis based on information theory

introduced in Fig. 7.6—the differences between the existing patterns are confined
to a single beat. As previously noted, there is only one base pattern throughout
the whole performance which sometimes shows an ornamentation in the fourth
beat. Thus, shifting the patterns only relocates the ornamentation to a different
beat. For this reason, the rate-distortion curves and measures for the different
alignments provide no evidence to prefer one over the others.

This second example stresses the fact that the proposed downbeat detection
approach requires not only the alternation of different rhythmic patterns but also
that the differences between them span over the whole rhythmic cycle, as it hap-
pens in the first example of Fig. 7.13. In fact, if there were no differences between
the rhythmic patterns for a certain beat during the entire recording, i.e. the four
tatums of the beat always were articulated in the same way, then this beat would
carry no information regarding the location of the downbeat and ambiguity would
arise between different shifts. Nevertheless, note that differences between base and
repicado patterns usually extend over the whole rhythmic cycle (see for instance
the music scores of Fig. 7.8). Consequently, the method is likely to succeed for
a performance that alternates the typical base and repicado patterns. On the
other hand, if the performance is too simple, the downbeat may not be identified
correctly. It is interesting to note that the degree of complexity of the perfor-
mance could be estimated beforehand, even without knowing the location of the
downbeat. The AUC or Jmin value for an arbitrary alignment could be used for
that purpose, since their values are very similar for the different alignments (see
Fig. 7.13). Actually, more reliable measures could be devised to assess the degree
of confidence in the downbeat estimation taking into account the extent of the
differences between the rhythmic patterns.

Experiment 7.5
In this experiment, the approach for downbeat detection based on information
theory is tested on the dataset introduced in Section 3.3. For each recording the
low-frequency feature was extracted and the beat/downbeat labels were used to
render the four different alignments of the beats within the rhythm cycle. Then,
for each different alignment the operational rate-distortion curve was computed
and the complexity measures were calculated. The downbeat was estimated as the
beat corresponding to the shift that minimizes the complexity measure.

The obtained results are presented in Table 7.1 for each file of the dataset,
including the value of the two different complexity measures considered. The
columns denoted as db1 and db2 are the number of the beat estimated as downbeat
for the AUC and Jmin measures, respectively. A leave-one-out scheme was followed
for determining the λ value for the discrete Lagrangian method, applying in each
fold a process similar to that of Fig. 7.9. A correct detection means the downbeat
is estimated as beat number 1, otherwise a failure is counted. The method attains
an overall correct detection of 65.7% for the AUC, and 74.3% for the Jmin measure.

The rows of the table are sorted according to the AUC value in ascending
order and those recordings in which the method fails for both measures are greyed
out. Note that the first four recordings of Table 7.1—which belong to the same
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performer—are troublesome for the method (the AUC measure criterion fails in all
of them, while the Jmin measure misses two). One of these recordings was already
analysed in the second example of Fig. 7.13. Apart from having the lowest degree
of complexity of the whole dataset (i.e. AUC value), all of them consist of a single
pattern occasionally ornamented in the fourth beat, and as previously noted fail
to provide enough information for downbeat detection. Both measures also fail in
some other recordings, such as number 6, which exhibits only a single base pattern
with a few simple variations. In this case, the patterns show virtually no differences
at the first beat during the entire performance, thus leading to ambiguity in the
selection of the downbeat. Something similar also happens with recording number
18, despite having a few repicado patterns.

It is interesting to note that for a large number of the recordings (22, 62.9%)
the estimation of the downbeat is correct for both measures. As expected, several
of these recordings belong the Ansina style and show an alternation of the typical
base and repicado patterns that was shown to be advantageous for the method.

7.5 Discussion and conclusions
In summary, an approach based on the rate-distortion theory was proposed, which
given an audio recording of a candombe performance computes a lossy represen-
tation that captures much of its underlying regularity but tolerates some amount
of distortion. Thus, within a rate-distortion theory framework, the study of the
trade-off between rate and distortion allows for the extraction of some relevant
information about the performance.

Several experiments were conducted in order to assess the usefulness of the pro-
posed approach when applied to a dataset of candombe drumming audio recordings.
In particular, different performances were compared according to a measure of their
overall complexity drawn from the operational rate-distortion curve, yielding re-
sults which roughly correspond to subjective judgement and correlate well with
personal style and expertise. In addition, the estimation of the number of different
rhythmic patterns in the recording was posed as the problem of selecting an oper-
ational point of the rate-distortion curve. The outcome of this method provided
compact representations of the performances that are quite in accordance with
manual analysis. Finally, the downbeat detection task was formulated as a data
compression problem aiming at finding structure in the performance being anal-
ysed. To do that, the different possible alignments of the beats within the rhythm
cycle were considered, and the one providing the most succinct representation—in
terms of the rate-distortion trade-off—was selected as the downbeat. The method
proved to be effective for a large part of the dataset, and the underlying ratio-
nale for its success as well as its limitations were discussed and illustrated with
examples. Note that the Bayesian approach for rhythm analysis yielded downbeat
detection results on the same dataset which are much better than those reported
here, see Section 6.3. However, the algorithm tracks a rhythmic pattern, that is
either based on a priori musical knowledge about the rhythm, or learned from the
labelled database itself. The herein proposed method is less grounded on high-
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num db1 AUC db2 Jmin filename

1 2 0.0141 3 0.0141 csic.1995 ansina2 02
2 4 0.0146 1 0.0145 csic.1995 ansina2 01
3 2 0.0155 3 0.0158 csic.1995 ansina2 04
4 4 0.0158 1 0.0164 csic.1995 ansina2 03
5 2 0.0172 3 0.0166 proyecto.1992 lobo 01
6 3 0.0189 4 0.0201 proyecto.1992 pelado 05
7 1 0.0280 1 0.0241 csic.1995 cuareim 02
8 1 0.0312 1 0.0252 proyecto.1992 lobo 06
9 1 0.0338 1 0.0266 zavala.muniz.2014 41

10 4 0.0347 1 0.0289 csic.1995 cuareim 01
11 1 0.0360 1 0.0248 zavala.muniz.2014 51
12 1 0.0373 1 0.0295 csic.1995 cuareim 03
13 1 0.0376 1 0.0264 zavala.muniz.2014 52
14 1 0.0378 1 0.0285 proyecto.1992 pelado 01
15 1 0.0378 1 0.0257 zavala.muniz.2014 45
16 1 0.0391 1 0.0260 zavala.muniz.2014 46
17 1 0.0402 1 0.0269 zavala.muniz.2014 44
18 4 0.0415 4 0.0300 csic.1995 cuareim 05
19 4 0.0417 1 0.0317 csic.1995 cuareim 04
20 1 0.0427 1 0.0309 proyecto.1992 gimenez 06
21 3 0.0437 2 0.0303 proyecto.1992 magarinos 02
22 1 0.0495 1 0.0333 zavala.muniz.2014 42
23 1 0.0523 1 0.0327 csic.1995 ansina1 04
24 1 0.0537 1 0.0318 csic.1995 ansina1 02
25 1 0.0541 1 0.0337 zavala.muniz.2014 49
26 1 0.0549 1 0.0316 csic.1995 ansina1 01
27 1 0.0557 1 0.0348 zavala.muniz.2014 53
28 4 0.0571 4 0.0355 zavala.muniz.2014 48
29 1 0.0580 1 0.0339 csic.1995 ansina1 03
30 1 0.0591 1 0.0334 csic.1995 ansina1 05
31 1 0.0619 4 0.0364 zavala.muniz.2014 50
32 1 0.0642 1 0.0370 zavala.muniz.2014 54
33 1 0.0644 1 0.0369 zavala.muniz.2014 47
34 1 0.0767 1 0.0409 zavala.muniz.2014 55
35 4 0.1008 4 0.0462 proyecto.1992 gimenez 02

total 23 65.7% 26 74.3%

Table 7.1: Downbeat detection results for the dataset from Section 3.3.

level information about the rhythm or in a training scheme, and constitutes a
novel idea for tackling the downbeat detection problem, that could be combined
with any other existing approach as another source of information.

A natural extension of the present work is taking into account the cost of
describing the chosen model itself, as in an MDL approach. This implies the cost
of describing the elements of the codebook of rhythmic patterns, which necessarily
involves a quantization of their continuous feature values. Then, the cost of the
model for coding the sequence of source symbols into the sequence of alphabet
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symbols has to be accounted for. For instance, if a Huffman coding for lossless
data compression is adopted, then the cost of describing the coding trees has to
be taken into account. This is illustrated in the rate-distortion curves of Fig. 7.14
for a real performance. The cost of describing the rhythmic patterns using a
uniform quantizer of 4 levels and the cost of describing the Huffman coding trees
is depicted, along with the rate of the encoded sequence. The total sum of the
rates, also shown, could be used for the type of analysis previously described. As
can be seen, the cost of coding the Huffman trees is almost negligible, but the
cost of describing codebook elements influences the total rate, in particular as
the codebook size increases. In spite of that, some simulations conducted yielded
very similar results compared to the ones reported, but this should be further
studied in future work. Besides, other information theory frameworks for model
selection will be tested in future work. The application of the proposed approach
for downbeat detection and structure analysis to other types of music which also
exhibit repeated rhythmic patterns (e.g. Afro-Brazilian and Afro-Cuban) is one
of the most promising future research strands.
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Figure 7.14: Operational rate-distortion curves including the cost of the model.
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Chapter 8

Conclusions

8.1 Summary and conclusions
The following is a summary of the thesis, which also highlights the key results, main
contributions and conclusions of the work. On the whole, the dissertation aimed
to build computational methods for the analysis of rhythm from audio recordings
of percussion music. A domain–specific and culture–aware approach was favoured,
oriented towards the Afro-Uruguayan candombe drumming.

Definition of a domain–specific and culture–aware perspective

The dissertation offered a comprehensive overview of the historical, social and
cultural context in which candombe drumming is embedded. In addition, a de-
scription of the rhythm and its performance practices was also provided. This
showed some of the traits that link candombe to other Afro-Atlantic music tradi-
tions and that consequently differentiate it from most usual rhythmic structures
found in the so–called ‘Western’ music. In brief, the clave pattern divides the
rhythmic cycle irregularly, the rhythmic pattern that defines the pulse—that of
the chico drum—usually does not articulate the beat and has instead an accent
on the second tatum, and some other strong phenomenological accents—from the
piano and repique drums—are displaced with respect to the metric structure.

Creation of music collections and annotated datasets

One of the specific contributions of the thesis was to build annotated music datasets
of candombe drumming suitable for research on computational rhythm analysis.
The musical setting considered was small-size candombe ensembles, of three to five
drums. An important amount of work was dedicated to collecting and labelling
audio recordings. Besides, recording sessions were conducted with the aim to pro-
duce an audio–visual dataset of candombe performances, that could serve both
documentary and research purposes. A detailed description of the tasks, require-
ments and technical challenges involved in producing the audio-visual records was
provided. The following contributions are highlighted as a result of this work.
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• A dataset of annotated recordings for beat and downbeat tracking was pub-
licly released, being the first resource of this type for candombe [219].

• An audio-visual dataset of candombe performances with multi–track audio
recordings and a multiple-camera set-up was obtained [197,255]. The dataset
includes different types of annotations, such as metrical information (beat
and downbeat), location of onsets and sections. Apart from its documentary
value, it is an important resource for research, that is being used outside the
scope of this dissertation for conducting studies on interpersonal entrainment
in music performance [251]1 and will be also made publicly available.

Discovery and analysis of rhythmic patterns

Part of the dissertation focused on the discovery and analysis of rhythmic patterns
from audio recordings. Efforts have been put in the formulation of relevant analysis
problems in the context of candombe drumming.

One of the type of problems addressed involves the study of rhythmic patterns
that span over the whole rhythmic cycle. For this purpose, a representation in the
form of a map of rhythmic patterns was devised, which is based on spectral onset
features in different frequency bands. When applied to the analysis of a recording,
it allows the inspection of the similarities and differences of the rhythmic patterns
used throughout the performance. Some experiments were carried out to study the
extended hypothesis that the piano drum patterns show stylistic differences related
to both personal and traditional performing styles. The unsupervised grouping of
rhythmic patterns from different recordings showed certain correlation with the
traditional styles, but a predominantly tendency to be clustered by performer.
It was even possible to recognized who was playing the piano drum in a certain
recording from a reduced group of performers. Certainly, additional information
should be considered to properly characterize piano drum performing styles, but
the experiments are just indicative of the potential usefulness of these kind of tools.

In addition, a pattern discovery problem was formulated to study the char-
acteristics of the clave pattern. It is based on the fact that, instead of a single
timeline pattern as in other Afro–Latin–American musics, the clave pattern in can-
dombe allows for several different types and variants. To that end, a method was
proposed in which the rhythm cycles in a given recording where the clave pattern
is played are identified using automatic onset detection and sound classification.
After that, the identified rhythmic patterns are clustered according to their simi-
larity, thus illustrating all the different ways in which the clave was played. Indeed,
some experiments showed that almost all the relevant clave variants reported in
the musicological literature were collected with this method from a relatively small
dataset of recordings. The comparison of all the collected clave patterns reveals
some invariances that stand out as an underlying structure of the rhythm.

1Within the Interpersonal Entrainment in Music Performance (IEMP) project.
https://musicscience.net/projects/iemp/
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Micro-rhythmic properties of the rhythm

Turning now to the other type of analysis tackled, the dissertation also studied the
micro–rhythmical properties of the drumming patterns in candombe. According
to the obtained results, the chico pattern exhibits a contraction of the inter–onset
intervals, that actually does not fit current musicological descriptions. Addition-
ally, the deviation of the repique primary pattern with respect to the four pulses
of the beat towards a triplet feeling, was somehow confirmed but more precisely
characterized. Overall, the analysis of several recordings revealed the systematic
use of micro–rhythmical deviations in the patterns of candombe, indicating that
micro–timing is a structural component of its rhythm. This can be considered as
an evidence of the existence of a sort of “swing” characteristic of candombe drum-
ming. These findings, while preliminary, suggest that candombe rhythm has an
isochronous grid of beats, that exhibits an uneven subdivision structure, follow-
ing a short-short-short-long (SSSL) pattern. To the best of our knowledge this is
the first systematic study and characterization of the micro–rhythmic structure of
candombe drumming from a dataset of multi-track audio recordings.

Automatic meter inference and tracking from audio recordings

The rest of the dissertation was devoted to the automatic inference and tracking of
the metric structure from audio recordings. The complexities and characteristics
of candombe drumming were appropriate to push the boundaries of the state of
the art in automatic rhythm analysis in MIR. Indeed, the rhythm proved to be
very challenging for most of the state–of–the–art methods for beat and downbeat
tracking. For this reason, a supervised scheme for rhythmic pattern tracking was
proposed in this thesis [219]—based on the Bayesian approach for rhythmic analy-
sis [293]—and a software implementation was publicly released. It aims at finding
the metric structure from an audio signal, including the phase of beats and down-
beats, by tracking a rhythmic pattern in the low–frequency band. Experiments
employing both rhythmic patterns based on musical knowledge and others learned
from the annotated data showed that the proposed algorithm can estimate the beat
and downbeat positions correctly for most of the files in the dataset. However, in
its present form, the main drawback of the proposed algorithm is its limited ability
to properly deal with tempo changes. A more elaborate algorithm [174], recently
published, also based on the Bayesian approach but able to track tempo variations,
showed a virtually perfect performance when trained and tested with the dataset
of candombe recordings. Therefore, the present work gives additional evidence of
the generalizability of the Bayesian approach to complex rhythms from different
music traditions. Moreover, the obtained results are very encouraging and allow
us to confidently tackle other problems and applications that rely on automatic
tracking of the metric structure from candombe recordings.

Finally, the downbeat detection task was formulated as a data compression
problem aiming at finding structure in the performance being analysed. To do
that, the different possible alignments of the beats within the rhythm cycle were
considered, and the one providing the most succinct representation—in terms of
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the rate–distortion trade–off—was selected as the downbeat. The method proved
to be effective for a large part of the dataset, and the underlying rationale for
its success as well as its limitations were discussed and illustrated with examples.
This is a novel idea for tackling the downbeat detection problem, that could be
combined with other existing methods and applied to other types of music that also
exhibit repeated rhythmic patterns. Additionally, it turned out that the obtained
description was well suited for addressing other related tasks, namely assessment
of performances’ complexity and estimation of the number of different rhythmic
patterns in a given recording.

8.2 Future work perspectives
There are several directions for future research based on the work presented in this
dissertation. The thesis attempted to identify research problems in rhythm analysis
of candombe drumming, which when addressed with the technologies developed
could lead to practical results that were musically relevant and useful. In some of
these problems, however, this dissertation has barely scratched the surface.

For example, the front–end used for the characterization of the rhythmic pat-
terns should be further investigated, in order to replace the simplistic spectral
flux based audio feature with a more appropriate alternative. Probably the most
promising strand to follow is to learn the relevant features directly from spectral
representations of the audio signals, by using, for instance, Convolutional Neural
Networks [96, 143]. The classification of the type of stroke for each articulated
pulse is also envisioned as a possible improvement of the proposed techniques for
some particular problems, such as pattern discovery and retrieval.

In addition, all the experiments conducted on rhythmic pattern analysis and
discovery, as well as the study of the micro–rhythmic structure, should be explored
further on larger datasets of audio recordings. In this way, some of the findings
that were suggested in this work could be rigorously tested to produce signifi-
cant musicological conclusions. Fortunately, increasing the datasets becomes more
feasible now, given the performance attained by the beat and downbeat tracking
algorithms adapted to candombe drumming, because manual annotations of the
metric structure seem to be not longer needed.

In fact, the availability of reliable algorithms for metric analysis opens up the
possibility for addressing several other music research questions. In future work,
instead of small–size candombe ensembles, large percussion groups will be tackled,
such as the comparsas that parade in Carnival. Analysis of their different per-
formance styles, considering for instance tempo and loudness evolution over time,
are interesting topics for future investigation. Similarly, the beat and downbeat
tracking tools should be extended to deal with groups that include, apart from
candombe drums, other musical instruments.

One of the most appealing treats of candombe is the role of the repique drum,
which has the greatest degree of freedom and is the main responsible of musical
variety. Therefore, one of our main goals for future research is to apply compu-
tational tools to study improvisation in candombe following recent studies in the

148



8.2. Future work perspectives

musicological field carried out by close collaborators [158].
There are several other open questions related to the work presented in this

dissertation that still have to be answered. The analysis of the micro-rhythmic
deviations of the different ensemble parts of a candombe performance leaves a
lot of room for investigation. For instance, it is very relevant to try to figure
out if such tiny deviations are actually perceptible, and if there is any cultural
bias in the ability of perceiving them or not. It is also interesting to study the
very tight synchronization that the candombe drummers seem to achieve in their
performances, as well as to characterize their timing discrepancies and other music
entrainment processes involved. Some of this issues are actually being addressed
in an ongoing research project about music entrainment [251].

Integration of developed algorithms into practical applications for music learn-
ing and performing is one of the most appealing directions for future work.

This dissertation strived to open up new paths for research in the application
of computational tools for the analysis of candombe drumming. We hope that the
future directions discussed here could be motivating for other researchers to join.
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Appendix A

List of performers

The performers acknowledged hereafter took part in the recordings of the dataset
for beat and downbeat tracking [219].

Mariano Barroso
Eduardo ‘Cacho’ Giménez
Eduardo ‘Malumba’ Giménez
Francisco Giménez
José Luis Giménez
Jorge ‘Foqué’ Gómez
José Pedro ‘Perico’ Gularte
Luis ‘Pocholo’ Maciel
Julio Magariños
Raúl ‘Neno’ Magariños
[. . . ] Magariños
Javier ‘Cerdo’ Martirena
Wilson Martirena
Eduardo ‘Tierra’ Nilo
Sergio Ortuño
Fernando ‘Lobo’ Núñez
Edinson ‘Palo’ Oviedo
Gustavo Oviedo
[. . . ] Pintos
Luis ‘Mocambo’ Quiroz
Rodolfo ‘Pelado’ Rodŕıguez
Fernando ‘Hurón’ Silva
Juan Silva
Raúl Silva
Waldemar ‘Cachila’ Silva
Héctor Manuel Suárez





Appendix B

Software tools

Software tools and experiments were implemented in Python, using Numpy, Scipy,
Matplotlib and Scikit-learn libraries. Music examples were typeset using LilyPond,
which was also applied together with Csound for the synthesis of test audio signals.
In order to leverage the software provided by other researchers also Matlab and R
were used. All the operating systems used were based on GNU/Linux.





Appendix C

Synthetic performances scores
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del Uruguay, pages 99–112. Comisión Sectorial de Educación Permanente,
Universidad de la República (2007), Montevideo, Uruguay, 2007.

[8] Coriún Aharonián. La murga, lo murgustico. In Músicas populares del
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[28] Lauro Ayestarán. El folklore musical Uruguayo. Editorial Arca, Montevideo,
Uruguay, 1967.

[29] Lauro Ayestarán. La ‘conversación’ de tamboriles. Revista Musical Chilena,
Santiago de Chile, (101), 1967.

[30] Lauro Ayestarán. El tamboril afrouruguayo. Bolet́ın Interamericano de
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coloniaje en la Banda Oriental. Facultad de Derecho y Ciencias Sociales,
Montevideo, 1947.

[235] Olga Picún. El candombe y la música popular uruguaya. Perspectiva
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[265] Rita L. Segato. El color de la cárcel en América Latina. Apuntes sobre
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Glossary

bar group of certain number of beats defining the highest metrical level.

beats points in time that define the pulse of the music.

bpm beats per minute, the unit used to measure tempo.

downbeat the first beat of a measure, bar or rhythmic cycle.

measure see bar, bar and measure are used interchangeably.

meter a structure of regular points in time hierarchically organized in levels.

rhythm patterns of organised durations that are present in the music.

tactus pulsation of the perceptually most salient metrical level.

tatum the lowest metrical pulse (subdivision).

tempo the frequency of the beats of the most salient metrical level.
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