

Clave patterns in Uruguayan Candombe drumming

Luis Jure, Martín Rocamora Universidad de la República, Uruguay

SUMMARY

Uruguayan Candombe drumming has deep African roots, and like other musics of the Afro–Atlantic world, its rhythm is timeline–based. The timeline pattern of Candombe, called *madera*, has many traits in common with similar patterns in Afro–American music, like the *son* clave. It presents, however, significant differences with the more common uses of timeline patterns in other musics of the same tradition. For instance, instead of a single timeline pattern as in other Afro–Latin–American musics, the *madera* pattern allows for different variants. In this paper, Music Information Retrieval techniques are applied to a dataset of Candombe recordings in order to analyse the characteristics of the *madera* pattern, and group and classify its most recurrent variations.

Uruguayan Candombe drumming

Llamada de tambores

- drum call parade
- ▶ groups of ca. 20 to 60 players
- ▶ three types of drum: chico, repique, piano

Fig. Group of Candombe drummers (cuerda de tambores) during a llamada de tambores.

Rhythmic structure

- ▶ 4-beat cycle, 16 pulses
- ► chico: high pitch, timekeeper
- ▶ repique: medium pitch, improviser
- ▶ piano: low pitch, rhythmic cycle

Fig. Simplified primary patterns of the three drums and *madera* with metric structure

MADERA PATTERN

The *madera* (or *clave*) pattern is produced by hitting the wooden shell of the drum with the stick. Played by all the drums as an introduction to and preparation for the rhythm; during the *llamada* only by the *repique* drum in between phrases.

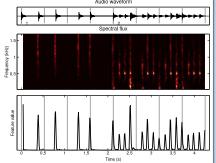
DATASET

- ▶ 14 complete performances (45 mins)
- multitrack audio recordings in studio
- ensembles of three to five players
- five different renowned players
- rhythm cycles manually labeled (i.e. beat and downbeat annotations)
- ca. 500 cycles are madera patterns

AUDIO FEATURE EXTRACTION

Spectral features used for both onset detection and madera sound classification.

Spectral flux (SF)


- ▶ Short-Time Fourier Transform
- mapped to MEL scale bands
- first-order difference
- ▶ half-wave rectified

Onset detection

- SF summed along all sub-bands
- fixed and adaptive thresholds

Sound classification

- first 40 MEL bands (< 1500 Hz)
- SVM trained on isolated sounds

DETECTION OF MADERA PATTERN SECTIONS

- proportion of onsets classified as madera within each rhythm cycle
- ▶ threshold computed using Otsu's method for a two-state classification
- hysteresis post-processing to avoid some spurious transitions

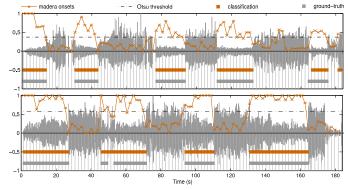


Fig. Detection of madera pattern sections for two repiques playing simultaneously

Analysis of madera cycles in a recording

- feature signal is time quantized to the 16 rhythm subdivisions
- a map of the feature vectors of each rhythm cycle is computed • the detected *madera* patterns are clustered and aurally checked

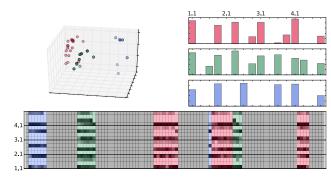
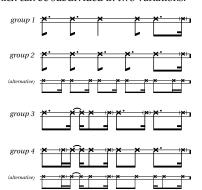
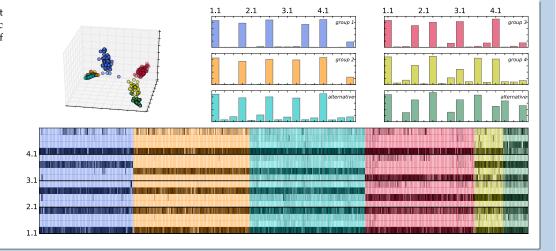




Fig. Analysis of madera patterns in a single recordings. The feature map of the recording (below), the centroid of each cluster (top-right) and a 3D Isomap representation of patterns (top-left).

DATASET ANALYSIS

All the cycles with *madera* pattern in the dataset ordered by cluster, with transcription in music notation. There are four main groups, two of which can be subdivided in two variations.

